Answer:
T = 1.766(M-m) Nm where M and m are the 2 masses of the objects
Explanation:
Let m and M be the masses of the 2 objects and M > m so the system would produce torque and rotational motion on the pulley. Force of gravity that exert on each of the mass are mg and Mg. Since Mg > mg, the net force on the system is Mg - mg or g(M - m) toward the heavier mass.
Ignore friction and string mass, and let g = 9.81 m/s2, the net torque on the pulley is the product of net force and arm distance to the pivot point, which is pulley radius r = 0.18 m
T = Fr = g(M - m)0.18 = 0.18*9.81(M - m) = 1.766(M-m) Nm
Answer:
The dog catches up with the man 6.1714m later.
Explanation:
The first thing to take into account is the speed formula. It is , where v is speed, d is distance and t is time. From this formula, we can get the distance formula by finding d, it is
Now, the distance equation for the man would be:
The distance equation for the dog would be obtained by the same way with just a little detail. The dog takes off running 1.8s after the man did. So, in the equation we must subtract 1.8 from t.
For a better understanding, at t=1.8 the dog must be in d=0. Let's verify:
Now, for finding how far they have each traveled when the dog catches up with the man we must match the equations of each one.
The result obtained previously means that the dog catches up with the man 3.8571s after the man started running.
That value is used in the man's distance equation.
Finally, the dog catches up with the man 6.1714m later.
Explanation:
Let and
The sum of the two vectors is
The difference between the two vectors can be written as
Answer:
The frequency of the wave is 5 x 10⁹ Hz
Explanation:
Given;
wavelength of the radio wave, λ = 6.0 × 10⁻²m
radio wave is an example of electromagnetic wave, and electromagnetic waves travel with speed of light, which is equal to 3 x 10⁸ m/s².
Applying wave equation;
V = F λ
where;
V is the speed of the wave
F is the frequency of the wave
λ is the wavelength
Make F the subject of the formula
F = V / λ
F = (3 x 10⁸) / (6.0 × 10⁻²)
F = 5 x 10⁹ Hz
Therefore, the frequency of the wave is 5 x 10⁹ Hz
solution:
We know v0 = 0, a = 9.8, t = 4.0. We need to solve for v
so,
we use the equation:
v = v0 + at
v = 0 + 9.8*4.0
v = 39.2 m/s
Now we just need to solve for d, so we use the equation:
d = v0t + 1/2*a*t^2
d = 0*4.0 + 1/2*9.8*4.0^2
d = 78.4 m