Refer to the diagram shown below.
T = the tension in the rope
N = the the normal reaction (the force that the table exerts on the box)
W = the hanging weight
Assume that the pulley is frictionless.
For equilibrium,
T = W
and
T + N = 77
Therefore
N = 77 - W
(a) When W = 30 N,
N = 77 - 30 = 47 n
Answer: 47 N
(b) When W = 60 N,
N = 77 - 60 = 17 N
Answer: 17 N
(c) When W = 90 N
N = 77 - 90 = - 13 N
There is no normal reaction, and the system is no longer in equilibrium.
Instead, the box will be lifted by a force of 13 N, and the box will accelerate upward.
Answer:
Wellll. I am assuming the direction of speed is in the same direction as the direction of displacement of the train. (i.e. Velocity is positive)
Acceleration is defined as the rate of change of velocity with respect to time (m^s-2)
Explanation:
The formula relating acceleration and angular velocity is:
a = ω^2 r
where a is acceleration, ω is angular velocity and r is
radius
But the angular velocity ω is constant all throughout the
disk therefore:
a1 / r1 = a2 / r2
So at points:
<span>r1 = 0.0130 m ->
a1 = 393 m/s^2</span>
<span>r2 = 0.0884 m ->
a2 = ?</span>
393 / 0.0130 = a2 / 0.0884
<span>a2 = 2,672.4 m/s^2</span>
Answer:
d = 771.3m
Explanation:
Let's first calculate the time of flight:
where Voy=0. Solving for t:

Now we calculate the horizontal displacement, wihch is the distance from the target to drop the package:
Xf = d = Vox*t
d = 180*4.285 = 771.3m