Answer:
A
Explanation:
this because
gravitational potential energy = mass x height x gravitational field strength
so let's assume mass is 2 kg and gravitational field strength is 10 N /kg
so when height is very low, take it as 3 m
gravitational potential energy= 2 x 3 x 10 = 60 j
but when height is 6m
gravitational potential energy = 2 x 6 x 10 = 120 j
so when the height is the greatest, the gravitational potential energy is the highest
so A is the heighest so it has the highest gravitational potential energy.
hope this helps
please mark it brainliest :D
A circle has a revolution of 360°. Since there are 12 hour markings, each hour interval has an angle of 30°. In radians, that would be equal to π/6 radians. So, in every 1 hour that passes, it covers π/6 of an angle. So, the angular velocity denoted as ω is π/6 ÷ 1 hour = π/6 rad/h. We can compute the average linear velocity, v, from the relationship:
v = rω, where r is the radius of the circle which is the length of the hour hand
v = (2.4 cm)(π/6 rad/h)
v = 1.257 cm/hour
Therefore, the average velocity is 1.257 cm per hour.
For the average acceleration, it is equal to zero. The hands of the clock move at a constant velocity. Since acceleration is the change of velocity per unit time, there is no change of velocity because it's constant. That's why it is zero.
Answer: 4.7m/s²
Explanation:
According to newton's first law,
Force = mass × acceleration
Since we are given more the one force, we will take the resultant of the two vectors.
Mass = 2.0kg
F1+F2 = (3i-8j)+(5i+3j)
Adding component wise, we have;
F1+F2 = 3i+5i-8j+3j
F1+F2 = 8i-5j
Resultant of the sum of the forces will be;
R² = (8i)²+(-5j)²
Since i.i = j.j = 1
R² = 8²+5²
R² = 64+25
R² = 89
R = √89
R = 9.4N
Our resultant force = 9.4N
Substituting in the formula
F = ma
9.4 = 2a
a = 9.4/2
a = 4.7m/s²
Therefore, magnitude of the acceleration of the particle is 4.7m/s²
D. March because it is just below the 1 million marker on the graph and it is the only one that low.
I notice that even though we're working with frames of reference
here, you never said which frame the '5 km/hr' is measured in.
In fact ! You didn't even say which frame the '12 km/hr' of his
bike is measured in.
So there are several different ways this could go. I'll do it the way
I THINK you meant it, but that doesn't guarantee anything.
-- Simon is riding his bike at 12 km/hr relative to the sidewalk,
away from Keesha.
-- He throws a ball at Keesha, at 5 km/hr relative to his own face.
-- Keesha sees the ball approaching her at (12 - 5) = 7 km/hr
relative to the ground and to her.