Answer:
An Object is positively charged if it has more Positive Electrons in that object
Answer:
Explanation:
In case of diffraction , angular width of central maxima =2 λ/d
λ is wave length of light and d is slit width
In case of interference , angular width of each fringe
= λ /D
D is distance between two slits
No of interference fringe in central diffraction fringe
=2 λ/d x D/λ = 2 x D /d = 2 x .24/.03 = 16.
Answer:

Explanation:
Using the tension in the spring and the force of the tension can by describe by
T = kx
, T = mg
Therefore:

With two springs, let, T1 be the tension in each spring, x1 be the extension of each spring. The spring constant of each spring is 2k so:


Solve to x1





Answer:
When have passed 3.9[s], since James threw the ball.
Explanation:
First, we analyze the ball thrown by James and we will find the final height and velocity by the time two seconds have passed.
We'll use the kinematics equations to find these two unknowns.
![y=y_{0} +v_{0} *t+\frac{1}{2} *g*t^{2} \\where:\\y= elevation [m]\\y_{0}=initial height [m]\\v_{0}= initial velocity [m/s] =41.67[m/s]\\t = time passed [s]\\g= gravity [m/s^2]=9.81[m/s^2]\\Now replacing:\\y=0+41.67 *(2)-\frac{1}{2} *(9.81)*(2)^{2} \\\\y=63.72[m]\\](https://tex.z-dn.net/?f=y%3Dy_%7B0%7D%20%2Bv_%7B0%7D%20%2At%2B%5Cfrac%7B1%7D%7B2%7D%20%2Ag%2At%5E%7B2%7D%20%5C%5Cwhere%3A%5C%5Cy%3D%20elevation%20%5Bm%5D%5C%5Cy_%7B0%7D%3Dinitial%20height%20%5Bm%5D%5C%5Cv_%7B0%7D%3D%20initial%20velocity%20%5Bm%2Fs%5D%20%3D41.67%5Bm%2Fs%5D%5C%5Ct%20%3D%20time%20passed%20%5Bs%5D%5C%5Cg%3D%20gravity%20%5Bm%2Fs%5E2%5D%3D9.81%5Bm%2Fs%5E2%5D%5C%5CNow%20replacing%3A%5C%5Cy%3D0%2B41.67%20%2A%282%29-%5Cfrac%7B1%7D%7B2%7D%20%2A%289.81%29%2A%282%29%5E%7B2%7D%20%5C%5C%5C%5Cy%3D63.72%5Bm%5D%5C%5C)
Note: The sign for the gravity is minus because it is acting against the movement.
Now we can find the velocity after 2 seconds.
![v_{f} =v_{o} +g*t\\replacing:\\v_{f} =41.67-(9.81)*(2)\\\\v_{f}=22.05[m/s]](https://tex.z-dn.net/?f=v_%7Bf%7D%20%3Dv_%7Bo%7D%20%2Bg%2At%5C%5Creplacing%3A%5C%5Cv_%7Bf%7D%20%3D41.67-%289.81%29%2A%282%29%5C%5C%5C%5Cv_%7Bf%7D%3D22.05%5Bm%2Fs%5D)
Note: The sign for the gravity is minus because it is acting against the movement.
Now we can take these values calculated as initial values, taking into account that two seconds have already passed. In this way, we can find the time, through the equations of kinematics.

As we can see the equation is based on Time (t).
Now we can establish with the conditions of the ball launched by David a new equation for y (elevation) in function of t, then we match these equations and find time t
![y=y_{o} +v_{o} *t+\frac{1}{2} *g*t^{2} \\where:\\v_{o} =55.56[m/s] = initial velocity\\y_{o} =0[m]\\now replacing\\63.72 +22.05 *t-(4.905)*t^{2} =0 +55.56 *t-(4.905)*t^{2} \\63.72 +22.05 *t =0 +55.56 *t\\63.72 = 33.51*t\\t=1.9[s]](https://tex.z-dn.net/?f=y%3Dy_%7Bo%7D%20%2Bv_%7Bo%7D%20%2At%2B%5Cfrac%7B1%7D%7B2%7D%20%2Ag%2At%5E%7B2%7D%20%5C%5Cwhere%3A%5C%5Cv_%7Bo%7D%20%3D55.56%5Bm%2Fs%5D%20%3D%20initial%20velocity%5C%5Cy_%7Bo%7D%20%3D0%5Bm%5D%5C%5Cnow%20replacing%5C%5C63.72%20%2B22.05%20%2At-%284.905%29%2At%5E%7B2%7D%20%3D0%20%2B55.56%20%2At-%284.905%29%2At%5E%7B2%7D%20%5C%5C63.72%20%2B22.05%20%2At%20%3D0%20%2B55.56%20%2At%5C%5C63.72%20%3D%2033.51%2At%5C%5Ct%3D1.9%5Bs%5D)
Then the time when both balls are going to be the same height will be when 2 [s] plus 1.9 [s] have passed after David throws the ball.
Time = 2 + 1.9 = 3.9[s]