Check this Light doesn't have mass or gravity right?
So if it doesn't have mass or gravity so light can only affect objects with mass
Does that make sense?
The black hole has gravity and remember light doesn't have gravity so does it affect the light?
To answer that yes, and since light doesn't have gravity it gets "pulled" into the black hole
I hope this helps you
Using Newton's second law of motion:
F=ma ; [ F = force (N: kgm/s^2);m= mass (kg); a = acceleration (m/s^2)
Given: Find: Formula: Solve for m:
F: 2500N mass:? F=ma Eq.1 m=F/a Eq. 2
a= 200m/s^2
Solution:
Using Eq.2
m= (2500 kgm/s^2)/ (200m/s^2) = 12.5 kg
Answer:
r = 4.21 10⁷ m
Explanation:
Kepler's third law It is an application of Newton's second law where the forces of the gravitational force, obtaining
T² = (
) r³ (1)
in this case the period of the season is
T₁ = 93 min (60 s / 1 min) = 5580 s
r₁ = 410 + 6370 = 6780 km
r₁ = 6.780 10⁶ m
for the satellite
T₂ = 24 h (3600 s / 1h) = 86 400 s
if we substitute in equation 1
T² = K r³
K = T₁²/r₁³
K =
K = 9.99 10⁻¹⁴ s² / m³
we can replace the satellite values
r³ = T² / K
r³ = 86400² / 9.99 10⁻¹⁴
r = ∛(7.4724 10²²)
r = 4.21 10⁷ m
this distance is from the center of the earth
The air pressure in the pressurized tank will be 24014.88 N/m²,196.2 N/m²,2084.625 N/m².
<h3 /><h3>What is pressure?</h3>
The force applied perpendicular to the surface of an item per unit area across which that force is spread is known as pressure.
It is denoted by P. The pressure relative to the ambient pressure is known as gauge pressure.
Pressure is found as the product of the density,acceleraton due to gravity and the height.
P₁=ρ₁gh₁
P₁=13,600 kg/m³×9.81 (m/s²)×0.18 m
P₁=24014.88 N/m²
P₂=ρ₂gh₂
P₂= 1000 kg/m³×9.81 (m/s²)×00.2 m
P₂=196.2 N/m²
P₃=ρ₃gh₃
P₃=850 kg/m³×9.81 (m/s²)×0.25
P₃=2084.625 N/m²
Hence,the air pressure in the pressurized tank will be 24014.88 N/m²,196.2 N/m²,2084.625 N/m².
To learn more about the pressure refer to the link;
brainly.com/question/356585
#SPJ4