As per the question, the velocity of the airplane [v] = 660 miles per hour.
The total time taken by airplane [t] = 3.5 hours.
We are asked to determine the total distance travelled by the airplane during that period.
The distance covered [ S] by a body is the product of velocity with the time.
Mathematically distance covered = velocity × total time
S = v × t
= 660 miles/hour ×3.5 hours
= 2310 miles.
Hence, the total distance travelled by the airplane in 3.5 hour is 2310 miles.
Answer:
spacing between the slits is 405.32043 ×
m
Explanation:
Given data
wavelength = 610 nm
angle = 2.95°
central bright fringe = 85%
to find out
spacing between the slits
solution
we know that spacing between slit is
I = 4
× cos²∅/2
so
I/4
= cos²∅/2
here I/4
is 85 % = 0.85
so
0.85 = cos²∅/2
cos∅/2 = √0.85
∅ = 2 ×
0.921954
∅ = 45.56°
∅ = 45.56° ×π/180 = 0.7949 rad
and we know that here
∅ = 2π d sinθ / wavelength
so
d = ∅× wavelength / ( 2π sinθ )
put all value
d = 0.795 × 610×
/ ( 2π sin2.95 )
d = 405.32043 ×
m
spacing between the slits is 405.32043 ×
m
Answer:
2.93 m (which agrees with answer "C" on the list)
Explanation:
Recall that the speed of the wave equals the product of the wave's length times its frequency. Therefore, the wavelength is going to be the quotient of the speed of the signal divided its frequency:
Wavelength = 2.997 10^8 / 1.023 10^8 = 2.93 m
C) alternately increase and decrease
Answer: the work will also increase by double
Explanation:
This is because they are directly proportional in the formula w=f x d