Answer:
The correct answer is D.
Explanation:
Amino acids can be classified <u>depending on the side chain structure</u> in
- acidic
- basic
- neutral
- aliphatic
- aromatic
- sulfur containing amino acids.
Aspargine is a <em>neutral amino acid</em> that has a key role in <u>glycoproteins biosynthesis.</u> Aspargine helps the body to resist fatigue and contributes to a smooth functioning of the liver.
Answer:lanthanides is the answer and here is a picture for proof
Explanation:
Answer:
Volume of dry gas at STP = 0.432 liters or 432 ml
Explanation:
Given:
Pressure (P) = 740 mmHg - 24 mmHg = 716 mmHg
Temperature (t) = 25 degrees C + 273 K = 298 K
500 ml = 0.5 l
Find:
Volume of dry gas at STP
Computation:
[P1][V1] / T1 = [P2][V2] / T2
[716][0.5] / 298 K = [760][ x Liters] / 273 K
x = 0.432 Liters
Volume of dry gas at STP = 0.432 liters or 432 ml
The answer to your question is C. A solution is a homogeneous mixture composed of two or more substances, so it couldn't have been A and D. Since a solution can't have its substances separated by a chemical means because they are chemically bonded, thus they are able to be separated by physical means
Answer:
See explanation.
Explanation:
Hello,
In this case, we could have two possible solutions:
A) If you are asking for the molar mass, you should use the atomic mass of each element forming the compound, that is copper, sulfur and four times oxygen, so you can compute it as shown below:

That is the mass of copper (II) sulfate contained in 1 mol of substance.
B) On the other hand, if you need to compute the moles, forming a 1.0-M solution of copper (II) sulfate, you need the volume of the solution in litres as an additional data considering the formula of molarity:

So you can solve for the moles of the solute:

Nonetheless, we do not know the volume of the solution, so the moles of copper (II) sulfate could not be determined. Anyway, for an assumed volume of 1.5 L of solution, we could obtain:

But this is just a supposition.
Regards.