The answer would be A. Genotype
Answer:
Kinetic energy is directly proportional to mass
Explanation:
Kinetic energy is directly proportional to the mass of an object and also directly proportional to the square of the velocity of that object:

Notice that if we keep velocity constant and only increase the mass of a object, the kinetic energy of that object would increase, as we've already emphasized the direct relationship between the kinetic energy term and the mass term.
Let's take a simple example: assume that object 1 and object 2 are both moving at the same velocity but object 1 has a much lower mass than object 2. According to the equation, object 1 has lower kinetic energy. This object can then transform all of its kinetic energy into some other form, say, heat the ground. The heat transferred will be significantly lower than by the object 2 moving at the same velocity but having a much greater mass.
Answer:
The reaction is endothermic.
Explanation:
Heat is absorbed in endothermic reactions. An endothermic process is any process which requires or absorbs energy from its surroundings, usually in the form of heat. It may be a chemical process, such as dissolving ammonium nitrate in water, or a physical process, such as the melting of ice cubes (wikipedia)
Standard Enthalpy of Reaction (ΔHrxn) is the amount of heat absorbed (+ΔH value) or released (-ΔH value) that results from a chemical reaction.
Answer:
The statement "Six turns of the cycle are required for every glucose molecule later produced in non–Calvin cycle reactions" is incorrect. It really looks not well-worded.
Explanation:
It is incorrect because Six turns of the cycle are required for every glucose molecule produced in Calvin cycle reactions, no in non-Calvin cycle reactions. This process includes the fixation of 6 molecules of carbon dioxide to produce 1 Glucose (seen as the addition of the two Phosphoglyceraldehide molecules (PGAL). Moreover, the other statements in the questions are correct:
ATP is required during carbon fixation.
The most intensive energy phase is reduction and sugar production.
Twelve NADPH are required for every six CO2 fixed.
NADPH is required for reduction and sugar production.