Answer:
0.78 atm
Explanation:
Step 1:
Data obtained from the question. This includes:
Mass of CO2 = 5.6g
Volume (V) = 4L
Temperature (T) =300K
Pressure (P) =?
Step 2:
Determination of the number of mole of CO2.
This is illustrated below:
Mass of CO2 = 5.6g
Molar Mass of CO2 = 12 + (2x16) = 12 + 32 = 44g/mol
Number of mole CO2 =?
Number of mole = Mass/Molar Mass
Number of mole of CO2 = 5.6/44
Number of mole of CO2 = 0.127 mole
Step 3:
Determination of the pressure in the container.
The pressure in the container can be obtained by applying the ideal gas equation as follow:
PV = nRT
The gas constant (R) = 0.082atm.L/Kmol
The number of mole (n) = 0.127 mole
P x 4 = 0.127 x 0.082 x 300
Divide both side by 4
P = (0.127 x 0.082 x 300) /4
P = 0.78 atm
Therefore, the pressure in the container is
1s, 2s, 3s, 3d, 3p. huehueheuheuehuehue
len toExplanation:tal esta echpo de los materia
<span>Molar mass (MM) of benzene C6H6
C = 6 * 12 = 72u
H = 6 * 1 = 6u
MM C6H6 = 72 + 6 = 78 g / mol
Benzene - Molar Mass = 78 g --------- 1 mol
Of A Mix has 468 g -------------- x
78x = 468
X = 468/78
X = 6 moles
Molar mass (MM) of Hydrochloric Acid HCl
H = 1 * 1 = 1u
CI = 1 * 35 = 35u
MM HCl = 1 + 35 = 36 g / mol
Hydrochloric Acid - Molar Mass = 36 g ---------- 1 mol
Of A Mix has 72 g ------------ y
36y = 72
Y = 72/36
Y = 2 moles
Thus, a mixture has a total of 8 moles (6 mol + 2 mol).
Dividing One Mole Amount of Each Substance by the Number of Total Mole Amounts,
Then we will obtain a Molar Fraction of Each:
Molar fraction make benzene = (6/8) simplify 2 = 3/4
Molar Fraction to make Hydrochloric Acid = (2/8) = simplify 2 = 1/4
Note:. The sum of the molar fractions of the always give goes 1, we have: 3/4 + 1/4 = 1
ANSWER:
</span>