Answer:
Adiabatic. This is a process where no heat is being added or removed from the system. Or can be simply stated as: no heat transfer (or heat flow) happening in a system.
Explanation:
Answer:
The atomic number of silicon is 14 while atomic mass of carbon is 14.
Explanation:
An atom consist of electron, protons and neutrons. Protons and neutrons are present with in nucleus while the electrons are present out side the nucleus.
All these three subatomic particles construct an atom. A neutral atom have equal number of proton and electron. In other words we can say that negative and positive charges are equal in magnitude and cancel the each other. For example if neutral atom has 6 protons than it must have 6 electrons. The sum of neutrons and protons is the mass number of an atom while the number of protons are number of electrons is the atomic number of an atom.
In given atoms ¹⁴₆C and ²⁸₁₄Si the atomic mass of carbon is 14 while the atomic number of silicon is 14. It means silicon has 14 electrons or protons while carbon has 6 protons or electrons because its atomic number is 6. Carbon has 6 protons and 8 neutrons in its nucleus while silicon has 14 protons and 14 neutrons in its nucleus.
In C:
Number of neutrons + protons = 8 + 6 = 14 amu (mass number)
Number of electrons = 6
In Si:
Number of neutrons + protons = 14 + 14 = 28 amu (mass number)
Number of electrons = 14
For any element the nucleus consists of neutrons and protons while electrons orbit around the nucleus, (3)
Answer:
The bismuth sample.
Explanation:
The specific heat
of a substance (might not be a metal) is the amount of heat required for heating a unit mass of this substance by unit temperature (e.g.,
.) The formula for specific heat is:
,
where
is the amount of heat supplied.
is the mass of the sample.
is the increase in temperature.
In this question, the value of
(amount of heat supplied to the metal) and
(mass of the metal sample) are the same for all four metals. To find
(change in temperature,) rearrange the equation:
,
.
In other words, the change in temperature of the sample,
can be expressed as a fraction. Additionally, the specific heat of sample,
, is in the denominator of that fraction. Hence, the value of the fraction would be the largest for sample with the smallest specific heat.
Make sure that all the specific heat values are in the same unit. Find the one with the smallest specific heat: bismuth (
.) That sample would have the greatest increase in temperature. Since all six samples started at the same temperature, the bismuth sample would also have the highest final temperature.