Answer:
∆H= <u>438 KJ/mol</u>
Explanation:
First, we have to find the <u>energy bond values</u> for each compound:
-) Cl-Cl = 243 KJ/mol
-) F-F = 159 KJ/mol
-) F-Cl = 193 KJ/mol
If we check the reaction we can calculate the <u>number of bonds</u>:

In total we will have:
-) Cl-Cl = 1
-) F-F = 3
-) F-Cl = 6
With this in mind. we can calculate the <u>total energy for each bond</u>:
-) Cl-Cl = (1*243 KJ/mol) = 243 KJ/mol
-) F-F = (3*159 KJ/mol) = 477 KJ/mol
-) F-Cl = (6*193 KJ/mol) = 1158 KJ/mol
Now, we can calculate the total energy of the <u>products</u> and the <u>reagents</u>:
Reagents = 243 KJ/mol + 477 KJ/mol = 720 KJ/mol
Products = 1158 KJ/mol
Finally, to calculate the total enthalpy change we have to do a <u>subtraction</u> between products and reagents:
∆H= 1158 KJ/mol-720 KJ/mol = <u>438 KJ/mol</u>
<u />
I hope it helps!
Answer:
我實際上不知道答案,我只是為了點數而這樣做,哈哈,祝你好運哈哈
Explanation:
我實際上不知道答案,我只是為了點我實際上不知道答案,我只是為了點數而這樣做,哈哈,祝你好運哈哈數而這樣做,哈哈,祝你好運哈哈
Answer:
Results
The percent error between 20 and 20.5 is 2.5%
Explanation:
Percent Error = | (20.5 − 20) / 20 | × 100 = | (0.5) / 20 | × 100 = | 0.025 | × 100 = 2.5% (three decimal places)Percent Error = 2.5%
The following statements from the paragraph are true. Protons have a mass that contributes significantly to the mass of the atomic nucleus. Neutrons have a mass that contributes significantly to the mass of the atomic nucleus. Electrons have a very low mass and are not found in the nucleus but instead are found in surrounding orbits.