Answer:
Multiply the acceleration by time to obtain the velocity change:
Example:
Velocity change = 6.95 * 4 = 27.8 m/s . Since the initial velocity was zero, the final velocity is equal to the change of speed. You can convert units to km/h by multiplying the result by 3.6: 27.8 * 3.6 ≈ 100 km/h
Answer:
a system of physical units ( SI units ) based on the metre, kilogram, second, ampere, kelvin, candela, and mole, together with a set of prefixes to indicate multiplication or division by a power of ten.
Explanation:
The problem here was not the error; it was the failure of NASA's systems engineering, and the checks and balances in our processes, to detect the error. That's why we lost the spacecraft.
Answer: C
Explanation:
In collision, whether elastic or inelastic collisions, momentum is always conserved. That is, the momentum before collision will be equal to the momentum after collision.
Change in momentum of the system will be momentum after collision minus total momentum before collision.
Since momentum is a vector quantity, the direction will also be considered.
Momentum = MV - mU
Let
M = 800 kg is going north
at V = 20 m/s and the other car
m= 800 kg is going south
at U = 10m/s.
Substitute all the parameters into the formula
Momentum = (800 × 20) - (800 × 10)
= 8000 kgm/s
The final momentum after collision will also be equal to 8000 kgm/s
Change in momentum = 8000 - 8000
Change in momentum = 0
The principle of a lever is when two equal forces act in opposite directions and ultimately come to a state of equilibrium if distanced properly
i hope that helps?^