1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
sveticcg [70]
3 years ago
6

Help mee pleaseee :)))

Physics
1 answer:
Anettt [7]3 years ago
8 0

Answer:

See the explanation below.

Explanation:

Solving the first image question:

C ) The resulting force is defined by Newton's second law which tells us that the sum of the forces on a body is equal to the product of mass by acceleration. That is, there must be a force that acts on a body to produce an acceleration. If there is no acceleration it is because there are no external forces or developed by the body. And if there is no acceleration the body moves at a constant speed, in a straight line, so the response is C.

For the second image, we must remember that weight is defined as the product of mass by gravitational acceleration.

W = m*g

where:

W = weight [N]

m = mass [kg]

g = gravity acceleration [m/s²]

Now we have

m = 50 [kg]

ge = Earth gravity acceleration = 10 [m/s²]

gp = Distant planet gravity acceleration = 4 [m/s²]

We = ge*m

We = 10*50 = 500 [N]

Wp =gp*m

Wp = 4*50 = 200 [N]

Therefore the answer is D

For the third image, The mass is always going to be preserved, regardless of where the body or object is in space, its weight is the only one that changes since the gravitational force is modified. That is, the mass on the moon and on Earth will always be the same.

m = 70 [kg]

First, we must calculate the acceleration, by means of the following equation of kinematics.

v_{f} =v_{o} +a*t

where:

Vf = final velocity = 20 [m/s]

Vo = initial velocity = 0 (because stars from the rest)

a = acceleration [m/s²]

t = time = 4 [s]

20 = 0 + a*4

20 = 4*a

a = 5 [m/s²]

Now using Newton's second law which tells us that the total force acting on a body is equal to the product of mass by acceleration.

F = m*a

where:

F = force [N] (units of Newtons)

m = mass = 2 [kg]

a = acceleration = 5 [m/s²]

F = 2*5

F = 10 [N]

The body of Figure D, since a total force of 25 [N] to the left acts on it, in the rest of cases the force is zero or much less than 25 [N]

50 + 40 - 35 - 30 = F

F = 25 [N]

You might be interested in
This type of telescope uses a lens to collect<br> light.
bezimeni [28]

Optical Telescopes....................................

7 0
3 years ago
Why is it realistic to say all living organisms are solar powered
Naddika [18.5K]
Beucase for example: humans rely on the sun for vitamins and to keep theyre skin healthy, animals for the same reason and plants rely on it for photosynthesis. hope that helps!
3 0
3 years ago
A block with mass M = 3 kg is moving on a flat surface with constant speed v1 =
Alchen [17]

Answer:

this makes no since so i cant help you here sorry

5 0
2 years ago
An astronaut drops a rock from the top of a crater on the moon. When the rock is halfway down to the bottom of the crater, its s
Alexxx [7]

Answer: vf1/vf2= 1/ sqrt(2)

Explanation :on the moon no drag force so we have only the  force of gravity. aceleration is g(moon)= 1.62m/s2.the rest is basic kinematics

if the rock travels H to the bottom we can calculate velocity:

vo=0m/s (drops the rock)  , yo=0

vf*vf= vo*vo+2g(y-yo)

when the rock is halfway  y = H/2 so:

vf1*vf1=2*g*H/2 so vf1 = sqrt(gH)

when the rock reach the bottom y=H so:

vf2*vf2=2*g*H so vf2 = sqrt(2gH)

so vf1/vf2= 1/ sqrt(2)

good luck from colombia

8 0
3 years ago
Read 2 more answers
Lukalu is rappelling off a cliff. The parametric equations that describe her horizontal and vertical position as a function of t
andre [41]

Answer:

2.5 s, 5 m

Explanation:

The equations for the horizontal and vertical position of Lukalu are:

x(t) = 8t\\y(t) = -16t^2 + 100

we can find the time it takes her to reach the ground by requiring that the vertical position becomes zero:

y(t) = 0

So we find:

0=-16t^2 +100\\16t^2 = 100\\t=\sqrt{\frac{100}{16}}=2.5 s

The horizontal distance of Lukalu instead will be given by the equation for the horizontal position, substituting t = 2.5 s:

x=8t = 8 \cdot 2.5 s =5 m

4 0
3 years ago
Other questions:
  • What group tend to take on electrons in order to become stable
    13·1 answer
  • 24 POINTS!!!!!!!!!!!!
    6·2 answers
  • A rope is vibrated so that transverse waves propagate down it. if the distance between crests is 0.5 m and a new crest reaches t
    5·1 answer
  • Tendons are strong elastic fibers that attach muscles to bones. To a reasonable approximation, they obey Hooke's law. In laborat
    14·1 answer
  • which one of the following will never happen when we use machine a force multiplication B innogy multiplication C is speed multi
    10·1 answer
  • Suppose you are given the following equation, where xf and xi represent positions at two instants of time, vxi is a velocity, ax
    13·1 answer
  • 1. What is the purpose of the lab, the importance of the topic, and the question you are trying to answer?
    5·1 answer
  • The si unit of average speed is m.s. True or False. anyone who is right I will give him brainlist if you are sure​
    6·1 answer
  • I'll mark brainly for the right answer!
    9·1 answer
  • Using the information from the previous problem (A 2kg ball rotates on the end of a 1.4m long string. The ball makes 5 revolutio
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!