Answer:
0.1313 g.
Explanation:
- It is known that at STP, 1.0 mole of ideal gas occupies 22.4 L.
- Suppose that hydrogen behaves ideally and at STP conditions.
<u><em>Using cross multiplication:</em></u>
1.0 mol of hydrogen occupies → 22.4 L.
??? mol of hydrogen occupies → 1.47 L.
∴ The no. of moles of hydrogen that occupies 1.47 L = (1.0 mol)(1.47 L)/(22.4 L) = 6.563 x 10⁻² mol.
- Now, we can get the no. of grams of hydrogen in 6.563 x 10⁻² mol:
<em>The no. of grams of hydrogen = no. of hydrogen moles x molar mass of hydrogen</em> = (6.563 x 10⁻² mol)(2.0 g/mol) = <em>0.1313 g.</em>
The concentration of HCl is equal to 2.54mol/L.
<h3>Mole calculation</h3>
To solve this question, one must use the molarity calculation, which corresponds to the following expression:

Thus, to find the molarity of the sample, the following calculations must be performed:



So, 0.00254 moles were added per 10ml, so we can do:

So, the concentration of HCl is equal to 2.54mol/L.
Learn more about mole calculation in: brainly.com/question/2845237
Explanation:
An electron current, the flow of electrons, contributes to an electric current since the electron 'carries' negative electric charge. ... The flow of ions (either positively or negatively charged) also contributes to an electric current in, for example, the electrolyte of an electrochemical cell.
hope it will work well?!
The volume of the water in cubic meter is determined as 3.2 x 10⁶ m³ .
<h3>Weight of one gallon of water</h3>
The weight of 1 gal of water is given as 3785 g
Mass of 8.48 x 10⁸ gal = 3785 x 8.48 x 10⁸ = 3.2 x 10¹² g
<h3>Volume of the water in cubic meters</h3>
Volume = mass/density
Volume = 3.2 x 10¹² g/1 gmL
Volume = 3.2 x 10¹² mL x 10⁻⁶ m³/mL = 3.2 x 10⁶ m³
Thus, the volume of the water in cubic meter is determined as 3.2 x 10⁶ m³ .
Learn more about volume here: brainly.com/question/1972490
#SPJ1