Answer:
Electromagnetic waves do not require any medium to travel whereas mechanical waves must have a medium to propagate.
So, Basically, it is B I believe.
Hope It Helps!
Answer:
The force is the same
Explanation:
The force per meter exerted between two wires carrying a current is given by the formula

where
is the vacuum permeability
is the current in the 1st wire
is the current in the 2nd wire
r is the separation between the wires
In this problem

Substituting, we find the force per unit length on the two wires:

However, the formula is the same for the two wires: this means that the force per meter exerted on the two wires is the same.
The same conclusion comes out from Newton's third law of motion, which states that when an object A exerts a force on an object B, then object B exerts an equal and opposite force on object A (action-reaction). If we apply the law to this situation, we see that the force exerted by wire 1 on wire 2 is the same as the force exerted by wire 2 on wire 1 (however the direction is opposite).
Answer:
Mutual inductance, 
Explanation:
(a) A toroidal solenoid with mean radius r and cross-sectional area A is wound uniformly with N₁ turns. A second thyroidal solenoid with N₂ turns is wound uniformly on top of the first, so that the two solenoids have the same cross-sectional area and mean radius.
Mutual inductance is given by :

(b) It is given that,


Radius, r = 10.6 cm = 0.106 m
Area of toroid, 
Mutual inductance, 

or

So, the value of mutual inductance of the toroidal solenoid is
. Hence, this is the required solution.
<h2>
Answer: 12 s</h2>
Explanation:
The situation described here is parabolic movement. However, as we are told <u>the instrument is thrown upward</u> from the surface, we will only use the equations related to the Y axis.
In this sense, the main movement equation in the Y axis is:
(1)
Where:
is the instrument's final position
is the instrument's initial position
is the instrument's initial velocity
is the time the parabolic movement lasts
is the acceleration due to gravity at the surface of planet X.
As we know
and
when the object hits the ground, equation (1) is rewritten as:
(2)
Finding
:
(3)
(4)
(5)
Finally:
