Anomalous data on a graph would show up as say a very high or very low value which does not fit in with the normal values which may be background values.If it was a straight line graph then the anomalous point would plot well above or below the line or if it was a bar graph ie a histogram it would be much higher or lower than the surrounding data. In mineral exploration, anomalies are looked for in say geophysics or geochemistry data values for high or low magnetism or conductivity or high chemical values indicating the presence of valuable minerals at that point.
Answer:
21.6 g
Explanation:
The reaction that takes place is:
First we<u> convert the given masses of both reactants into moles</u>, using their <em>respective molar masses</em>:
- 9.6 g CH₄ ÷ 16 g/mol = 0.6 mol CH₄
- 64.9 g O₂ ÷ 32 g/mol = 2.03 mol O₂
0.6 moles of CH₄ would react completely with (2 * 0.6) 1.2 moles of O₂. As there are more O₂ moles than required, O₂ is the reactant in excess and CH₄ is the limiting reactant.
Now we <u>calculate how many moles of water are produced</u>, using the <em>number of moles of the limiting reactant</em>:
- 0.6 mol CH₄ *
= 1.2 mol H₂O
Finally we<u> convert 1.2 moles of water into grams</u>, using its <em>molar mass</em>:
- 1.2 mol * 18 g/mol = 21.6 g
Answer:
Radiation
Explanation:
A sun transfers energy by radiation. However, there are three different modes of heat energy transfer -
a) Radiation
b) Conduction
c) Convection
Since sun is a at a very far distance from earth, it cannot transfer its heat energy by conduction as for this mode of heat transfer two bodies need to be in touch with each other.
For convection mode of heat transfer a medium is required but for transfer of sun's energy (which is electromagnetic radiation) no medium is required.
Hence, Sun will transfer energy by radiation only.
Hope This Helps!!! <3
Im not really sure what your asking.... <span>Standard sea-level pressure, by definition, equals 760 mm (29.92 inches) of mercury, </span>14.70 pounds per square inch<span>, 1,013.25 × 10 </span>3<span> dynes per square centimetre, 1,013.25 millibars, one standard atmosphere, or 101.325 kilopascals.
</span><span>""atmospheric pressure | Britannica.com""</span>
Answer:
HNO₃.
Explanation:
- It is known that acids decrease the pH of the solution, while bases increase the pH of the solution.
So, HF and HNO₃ decrease the pH of the solution as they produce H⁺ in the solution.
While, KOH and NH₃ increase the pH of the solution as they produce OH⁻ in the solution.
HNO₃ will decrease the pH of the solution greater than HF.
- Because HNO₃ is strong acid that decomposes completely to produce H⁺ more than the same concentration of HF that is a weak acid which does not decomposed completely to produce H⁺.