Answer:
a) a = 2.383 m / s², b) T₂ = 120,617 N
, c) T₃ = 72,957 N
Explanation:
This is an exercise of Newton's second law let's fix a horizontal frame of reference
in this case the mass of the sleds is 30, 20 10 kg from the last to the first, in the first the horizontal force is applied.
a) request the acceleration of the system
we can take the sledges together and write Newton's second law
T = (m₁ + m₂ + m₃) a
a = T / (m₁ + m₂ + m₃)
a = 143 / (10 +20 +30)
a = 2.383 m / s²
b) the tension of the cables we think through cable A between the sledges of 1 and 20 kg
on the sled of m₁ = 10 kg
T - T₂ = m₁ a
in this case T₂ is the cable tension
T₂ = T - m₁ a
T₂ = 143 - 10 2,383
T₂ = 120,617 N
c) The cable tension between the masses of 20 and 30 kg
T₂ - T₃ = m₂ a
T₃ = T₂ -m₂ a
T₃ = 120,617 - 20 2,383
T₃ = 72,957 N
Probably ocean currents since these use heat to move large amounts of water throughout the ocean, and can you make this the brainliest answer
Answer:
part (a)
towards north east direction.
part (b) s = 46.60 m
Explanation:
Given,
- velocity of the river due to east =

- velocity of the boat due to the north =

part (a)
River is flowing due to east and the boat is moving in the north, therefore both the velocities are perpendicular to each other and,
Hence the resultant velocity i,e, the velocity of the boat relative to the shore is in the North east direction. velocities are the vector quantities, Hence the resultant velocity is the vector addition of these two velocities and the angle between both the velocities are 
Let 'v' be the velocity of the boat relative to the shore.

Let
be the angle of the velocity of the boat relative to the shore with the horizontal axis.
Direction of the velocity of the boat relative to the shore.
part (b)
- Width of the shore = w = 300m
total distance traveled in the north direction by the boat is equal to the product of the velocity of the boat in north direction and total time taken
Let 't' be the total time taken by the boat to cross the width of the river.
Therefore the total distance traveled in the direction of downstream by the boat is equal to the product of the total time taken and the velocity of the river