Answer:
Tend to keep the product concetration <u>low</u> and therefore drive the reaction <u>righward</u>
Explanation:
The fact the products of a reaction are quickly consumed by the next one would tend to keep the product concetration low and therefore drive the reaction righward (to the products).
This happens because the system will not achive equilibrium between the reactants and the product, and will keep producing it util the system achives equilibrium or the reactants dry out.
Answer:
b) Phosphorus acid
Explanation:
To distinguish the type of acid of phosphorus with the oxidation state of +3, we need to be familiar with the chemical formula of each of the compounds:
Orthophosphoric acid H₃PO₄
Phosphorus acid H₃PO₃
Metaphosphoric acid HPO₃
Phyrophosphoric acid H₄P₂O₇
Now that we know the formula of the given compounds, the algebraic sum of all the oxidation numbers of all atoms in a neutral compound is zero:
Only phosphorus acid yielded an oxidation state of +3 for phosphorus in the compound.
H₃PO₃:
we know the oxidation state of H = +1
O = -2
The oxidation state of P is unknown. We can express this as an equation:
3(+1) + P + 3(-2) = 0
3 + P -6 = 0
P-3 = 0
P = +3
Answer:
1.2
Explanation:
Molarity = moles/volume
to find the moles, you must multiply both sides by volume
so, take 1.5 L * 0.80 M
this equals 1.2 :)
Answer:
Explanation:
n CaCO3 = mass / m.wt
= 500 /( 40 + 12 + 16x 3)
= 5 mole
n CaO = 5 moles ( from the balanced equation we have 1:1 moles )
mass of CaO = nCaO X m.wt
5 x( 40 +16 )
= 280 grams