Answer:
1.evaperation
2.condenstation
3.precipatation
Explanation:
So I guess condenstation leads to precipatation-
Answer:
to find the number of electrons you need the charge of the element.
Answer:
32.6%
Explanation:
Equation of reaction
2KClO₃ (s) → 2KCl (s) + 3O₂ (g)
Molar mass of 2KClO₃ = 245.2 g/mol ( 122.6 × 2)
Molar volume of Oxygen at s.t.p = 22.4L / mol
since the gas was collected over water,
total pressure = pressure of water vapor + pressure of oxygen gas
0.976 = 0.04184211 atm + pressure of oxygen gas at 30°C
pressure of oxygen = 0.976 - 0.04184211 = 0.9341579 atm = P1
P2 = 1 atm, V1 = 789ml, V2 = unknown, T1 = 303K, T2 = 273k at s.t.p
Using ideal gas equation
=
V2 =
V2 = 664.1052 ml
245.2 yielded 67.2 molar volume of oxygen
0.66411 will yield =
= 2.4232 g
percentage of potassium chlorate in the original mixture =
= 32.6%
<span>Answer:
The HCl and KOH will react until one or the other is gone. As you have a larger volume of an equal concentration of HCl, the KOH will go first.
moles HCl = 0.04000 L * 0.100 M = 0.00400 moles
moles KOH = 0.02500 L * 0.100 M = 0.00250 moles
moles HCl left = 0.00400 - 0.00250 = 0.00150 moles
Your total volume is now 65.00 mL, so the [HCl] = 0.00150 moles / 0.06500 L = 0.0231 M = [H+]
pH = -log [H+] = -log (0.0231) = 1.64</span>
Answer: On losing 6 moles of water, cobalt chloride forms unstable violet-coloured ions, before generating its stable blue-coloured anhydrous form.
Explanation:
The hydrated cobalt chloride loses its 6 water of crystallization, then dissociates into ions: cobalt ions and chlorine ions that appear violet, and quickly combined to form the stable anhydrous Cobalt chloride with blue colour.