Answer:
Ba(OH)₂ + 2 HBr ⇒ BaBr₂ + 2 H₂O
Explanation:
We have the products of a reaction and we have to predict the reactants. Since the products are binary salt and water, this must be a neutralization reaction. In neutralizations, acids react with bases. The acid that gives place to Br⁻ is HBr, while the base the gives place to Ba²⁺ is Ba(OH)₂. The balanced chemical equation is:
Ba(OH)₂ + 2 HBr ⇒ BaBr₂ + 2 H₂O
Answer : False, there will be two lithium and one oxygen atoms in a unit molecular structure of lithium oxide.
Explanation:
Electronic configuration of lithium is :

In order to attain stable electronic configuration it will loose an electron and form positively charge cation.

The electronic configuration of oxygen is:

Oxygen being second most electronegative atom requires two electrons to attain noble gas configuration stability and form negatively charge ion with 2- charge.:

When two atom of lithium and oxygen comes together , one electron from each lithium atom get transferred to an oxygen atom which results in formation of lithium oxide.

<u>Answer:</u>
<u>For a:</u> The empirical formula of the compound is 
<u>For b:</u> The empirical formula of the compound is 
<u>Explanation:</u>
We are given:
Percentage of P = 43.6 %
Percentage of O = 56.4 %
Let the mass of compound be 100 g. So, percentages given are taken as mass.
Mass of P = 43.6 g
Mass of O = 56.4 g
To formulate the empirical formula, we need to follow some steps:
- <u>Step 1:</u> Converting the given masses into moles.
Moles of Phosphorus =
Moles of Oxygen = 
- <u>Step 2:</u> Calculating the mole ratio of the given elements.
For the mole ratio, we divide each value of the moles by the smallest number of moles calculated which is 1.406 moles.
For Phosphorus = 
For Oxygen = 
Converting the moles in whole number ratio by multiplying it by '2', we get:
For Phosphorus = 
For Oxygen = 
- <u>Step 3:</u> Taking the mole ratio as their subscripts.
The ratio of P : O = 2 : 5
Hence, the empirical formula for the given compound is 
We are given:
Percentage of K = 28.7 %
Percentage of H = 1.5 %
Percentage of P = 22.8 %
Percentage of O = 56.4 %
Let the mass of compound be 100 g. So, percentages given are taken as mass.
Mass of K = 28.7 g
Mass of H = 1.5 g
Mass of P = 43.6 g
Mass of O = 56.4 g
To formulate the empirical formula, we need to follow some steps:
- <u>Step 1:</u> Converting the given masses into moles.
Moles of Potassium =
Moles of Hydrogen =
Moles of Phosphorus =
Moles of Oxygen = 
- <u>Step 2:</u> Calculating the mole ratio of the given elements.
For the mole ratio, we divide each value of the moles by the smallest number of moles calculated which is 0.735 moles.
For Potassium = 
For Hydrogen = 
For Phosphorus = 
For Oxygen = 
- <u>Step 3:</u> Taking the mole ratio as their subscripts.
The ratio of K : H : P : O = 1 : 2 : 1 : 4
Hence, the empirical formula for the given compound is 