1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
laila [671]
3 years ago
12

The line voltage of a balanced three-phase transmission line is 4200 V rms. The transmission line has an impedance of 4 6 Z j l

  per phase. Assuming that the load receives a total of 1 MVA at 0.75 power factor lagging, determine (a) the complex power, (b) the power loss in the three-phase line, (c) the line voltage at the sending end of the transmission line.
Engineering
1 answer:
balu736 [363]3 years ago
4 0

Answer:

1.23MVA, 226.74kW, 5.16kV

Explanation:

Parameters Given

line impedance, Zl = (4 + j6) ohms per phase

load voltage, Vl = 4200V

received complex power, S = 1 × 10⁶VA

power factor, cosФ = 0.75

Ф = 41.41°

sinФ = 0.66

Solution:

S = √3 * Vl * I (that is √3 × line voltage × line current)

1 × 10⁶ = √3 × 4200 × I

I = 137.46A

Vl = 4200∠0

I = 137.46∠- 41.41° lagging

source voltage, Vs = load voltage, Vl + voltage drop along the line, Vd

Vd = Zl * I where ( Zl = 4 + j6, = √(4² + 6²)∠tan⁻¹(6/4), = 7.21∠56.31° )

Vd = 7.21∠56.31° × 137.46∠- 41.41°  

= 991.22∠14.9°

Vs = Vl + Vd

= 4200∠0° + 991.22∠14.9°

= 4200(cos 0° + j sin 0°) + 991.22(cos 14.9° + jsin 14.9°)

= 4200 + 957.68 + j254.88

= 5157.68 + j254.88

or

= 5163.97∠2.83° V (line voltage at the sending end of the transmission line)

Sending end current, I = 137.46∠-41.41 A

(a) Complex power = √3 × Vs × I

= √3 × 5163.97∠2.83° ×137.46∠-41.41

= 1229477.76∠-38.58°VA

= 1.23∠-38.58MVA

complex power = 1.23MVA

(b) power loss in the three phase line, Pl = 3 × square of line current, I × line impedance, Rl

Pl =3 × I² × Rl where Zl = R + j X = 4 + j6 hence R = 4

= 3 × 137.46² × 4

= 226743.02W

= 226.74kW

(c) from the above, the line voltage at the sending end of the transmission line is = 5163.97V

= 5.16kW  

You might be interested in
A large heat pump should upgrade 5 MW of heat at 85°C to be delivered as heat at 150°C. Suppose the actual heat pump has a COP o
AysviL [449]

Answer:

W=2 MW

Explanation:

Given that

COP= 2.5

Heat extracted from 85°C  

Qa= 5 MW

Lets heat supplied at 150°C   = Qr

The power input to heat pump = W

From first law of thermodynamics

Qr= Qa+ W

We know that COP of heat pump given as

COP=\dfrac{Qr}{W}

2.5=\dfrac{5}{W}

2.5=\dfrac{5}{W}

W=2 MW

For Carnot heat pump

COP=\dfrac{T_2}{T_2-T_1}

2.5=\dfrac{T_2}{T_2-(273+85)}

2.5 T₂ -  895= T₂

T₂=596.66 K

T₂=323.6 °C

7 0
3 years ago
Which option distinguishes the type of software the team should use in the following scenario?
Vladimir79 [104]
C geographic mapping software
7 0
3 years ago
A cylindrical specimen of this alloy 12 mm in diameter and 188 mm long is to be pulled in tension. Assume a value of 0.34 for Po
kicyunya [14]

This question is incomplete, the missing image in uploaded along this answer below.

Answer:

The required stress is 200 Mpa

Explanation:

Given the data in the question;

diameter D = 12 mm = 12 × 10⁻³ m

Length L = 188 mm = 188 × 10⁻³ m

Poisson's ratio v = 0.34

Reduction in diameter Δd = 0.0105 mm = 0.0105 × 10⁻³ m

The transverse strain will;

εˣ = Δd / D

εˣ = -0.0105 × 10⁻³ /  12 × 10⁻³ m

εˣ = -0.00088

The longitudinal strain will be;

E^z = - ( εˣ  / v )

E^z = - ( -0.00088  / 0.34 )

E^z = - ( - 0.002588 )

E^z = 0.0026

Now, Using the values for strain, we get the value of stress from the graph provided in the question, ( first image uploaded below.

From the graph, in the Second image;

The stress is 200 Mpa

Therefore, The required stress is 200 Mpa

8 0
2 years ago
Steam enters a turbine steadily at 7 MPa and 600°C with a velocity of 60 m/s and leaves at 25 kPa with a quality of 95 percent.
Rufina [12.5K]

Answer:

a) \dot m = 16.168\,\frac{kg}{s}, b) v_{out} = 680.590\,\frac{m}{s}, c) \dot W_{out} = 18276.307\,kW

Explanation:

A turbine is a steady-state devices which transforms fluid energy into mechanical energy and is modelled after the Principle of Mass Conservation and First Law of Thermodynamics, whose expressions are described hereafter:

Mass Balance

\frac{v_{in}\cdot A_{in}}{\nu_{in}} - \frac{v_{out}\cdot A_{out}}{\nu_{out}} = 0

Energy Balance

-q_{loss} - w_{out} + h_{in} - h_{out} = 0

Specific volumes and enthalpies are obtained from property tables for steam:

Inlet (Superheated Steam)

\nu_{in} = 0.055665\,\frac{m^{3}}{kg}

h_{in} = 3650.6\,\frac{kJ}{kg}

Outlet (Liquid-Vapor Mix)

\nu_{out} = 5.89328\,\frac{m^{3}}{kg}

h_{out} = 2500.2\,\frac{kJ}{kg}

a) The mass flow rate of the steam is:

\dot m = \frac{v_{in}\cdot A_{in}}{\nu_{in}}

\dot m = \frac{\left(60\,\frac{m}{s} \right)\cdot (0.015\,m^{2})}{0.055665\,\frac{m^{3}}{kg} }

\dot m = 16.168\,\frac{kg}{s}

b) The exit velocity of steam is:

\dot m = \frac{v_{out}\cdot A_{out}}{\nu_{out}}

v_{out} = \frac{\dot m \cdot \nu_{out}}{A_{out}}

v_{out} = \frac{\left(16.168\,\frac{kg}{s} \right)\cdot \left(5.89328\,\frac{m^{3}}{kg} \right)}{0.14\,m^{2}}

v_{out} = 680.590\,\frac{m}{s}

c) The power output of the steam turbine is:

\dot W_{out} = \dot m \cdot (-q_{loss} + h_{in}-h_{out})

\dot W_{out} = \left(16.168\,\frac{kg}{s} \right)\cdot \left(-20\,\frac{kJ}{kg} + 3650.6\,\frac{kJ}{kg} - 2500.2\,\frac{kJ}{kg}\right)

\dot W_{out} = 18276.307\,kW

6 0
3 years ago
5. Name two health problems that fume can cause?<br> a)....<br> b)......
Vlad [161]

Answer:

A) Cancer of the Lungs

B)Larynx and Urinary Tract, as well as nervous system and kidney damage

Explanation:

5 0
3 years ago
Read 2 more answers
Other questions:
  • How would an engineer know if a product design were feasible?
    8·2 answers
  • The amount of time an activity can be delayed and yet not delay the project is termed:_________
    14·1 answer
  • Here, we want to become proficient at changing units so that we can perform calculations as needed. The basic heat transfer equa
    15·1 answer
  • I study to get good grades because my parents want to send me to the college of my choice.” This is an a. Intrinsic motivational
    6·2 answers
  • Traffic at a roundabout moves
    8·1 answer
  • The air loss rate for a straight truck or bus with the engine off and the brakes
    11·1 answer
  • How do the remains of plants and animals become fossil fuels. Why are they considered nonrenewable resources?
    13·1 answer
  • 2) What kinds of food can you eat in space?
    14·2 answers
  • A cantilever beam AB of length L has fixed support at A and spring support at B.
    11·1 answer
  • You insert a dielectric into an air-filled capacitor. How does this affect the energy stored in the capacitor?.
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!