<h3>
Answer:</h3>
0.3093 g of glucose are consumed each minute by the body.
<h3>
Explanation:</h3>
- During cellular respiration glucose is broken down in presence of oxygen to yield energy, water and carbon dioxide.
- The equation for the reaction taking place during cellular respiration is;
C₆H₁₂O₆ + 6O₂ → 6H₂O + 6CO₂
We are required to calculate the amount of glucose in grams;
<h3>Step 1: Calculate the moles of glucose broken down</h3>
From the equation, the mole ratio of glucose to Oxygen is 1 : 6
Moles of Oxygen in a minute is 1.03 × 10^-2 moles
Therefore, moles of glucose will be;
= (1.03 × 10^-2)÷6
= 1.717 × 10^-3 moles
<h3>Step 2: Mass of glucose </h3>
Mass is given by multiplying the number of moles with molar mass
mass = moles × molar mass
Molar mass glucose is 180.156 g/mol
Therefore;
Mass = 1.717 × 10^-3 × 180.156 g/mol
= 0.3093 g
Hence, 0.3093 g of glucose are consumed each minute by the body.
To go from molecules to moles divide by Avogadro's number [<span>6.02x10^23]</span>
Example:
1.50x10^23 divided by 6.02x10^23 = 0.249 moles rounded to three significant figures
Answer:
pH = 10.9
Explanation:
Hello there!
In this case, according to the given information, it turns out possible for us to say that the undergoing reaction between this buffer and OH⁻ promotes the formation of more CO₃²⁻ because it acts as the base, we can do the following:

The resulting concentrations are:
![[CO_3^{2-}]=\frac{0.1435mol}{0.25L}=0.574M \\](https://tex.z-dn.net/?f=%5BCO_3%5E%7B2-%7D%5D%3D%5Cfrac%7B0.1435mol%7D%7B0.25L%7D%3D0.574M%20%5C%5C)
![[HCO_3^{-}]=\frac{0.0265mol}{0.25L}=0.106M](https://tex.z-dn.net/?f=%5BHCO_3%5E%7B-%7D%5D%3D%5Cfrac%7B0.0265mol%7D%7B0.25L%7D%3D0.106M)
Thus, since the pKa of this buffer system is 10.2, the change in the pH would be:

Which makes sense since basic OH⁻ ions were added.
Regards!
Answer: The reaction is endothermic.
Explanation:
Endothermic reaction : It is a type of chemical reaction where the energy is absorbed from the surrounding. In the endothermic reaction, the reactant have less energy than the energy of products
In endothermic reaction, enthalpy terms is located on the reactant side.
Example:
Exothermic reaction : It is a type of chemical reaction where the energy is released into the surrounding. In the exothermic reaction, the energy of reactants are more than the energy of products
In exothermic reaction, enthalpy terms is located on the product side.
Example: 