How do you write a letter to the editor?
Open the letter with a simple salutation. ...
Grab the reader's attention. ...
Explain what the letter is about at the start. ...
Explain why the issue is important. ...
Give evidence for any praise or criticism. ...
State your opinion about what should be done. ...
Keep it brief. ...
Sign the letter.
Pretty sure it is clockwise if I am not mistaken
Answer:
Feathers are great thermal insulators.
Explanation:
Feathers are great thermal insulators. The loose structure of down feathers traps air.
As a result, energy cannot be transmitted easily through down feathers. This means birds are insulated from cold air outside, plus their body heat doesn't escape easily either.
Human beings discovered that down feathers are good for insulation long ago. For example, documents from the 1600s show that Russian merchants sold “bird down" to the Dutch hundreds of years ago.
Today, down is used in all sorts of products, including coats, bedding, and sleeping bags, to help better insulate the user from cold weather. Down can be collected from many different types of birds, but most of today's supply comes from domestic geese.
If you have a down coat or comforter, is it all down? In the United States, laws require that products labeled “100 percent down" contain only down feathers.
If your product is labeled “down," it can contain a mixture of both down feathers and synthetic fibers. Not all down feathers are created equal, though.
Down insulation is rated on a measure called “fill power." The higher the fill power, the more the down insulates.
The highest fill-power rating — 1200 — goes to eiderdown, which comes from the Common Eider duck. Eiderdown tends to be expensive.
Answer:
48.16 %
Explanation:
coefficient of restitution = 0.72
let the incoming speed be = u
let the outgoing speed be = v
kinetic energy = 0.5 x mass x 
- incoming kinetic energy = 0.5 x m x
- coefficient of restitution =

0.72 =
v = 0.72u
therefore the outgoing kinetic energy = 0.5 x m x 
outgoing kinetic energy = 0.5 x m x 
outgoing kinetic energy = 0.5184 (0.5 x m x
)
recall that 0.5 x m x
is our incoming kinetic energy, therefore
outgoing kinetic energy = 0.5184 x (incoming kinetic energy)
from the above we can see that the outgoing kinetic energy is 51.84 % of the incoming kinetic energy.
The energy lost would be 100 - 51.84 = 48.16 %