To develop this problem we will apply the concepts related to the Electromagnetic Force. The magnetic force can be defined as the product between the free space constant, the current (of each cable) and the length of these, on the perimeter of the cross section, in this case circular. Mathematically it can be expressed as,

Here,
= Permeability free space
I = Current
L = Length
d= Distance between them
Our values are,




Rearranging the previous equation to find the current,





Therefore the current in the rods is 210.6A
Answer:
Melt.
Explanation:
When rocks melt, they do so slowly and gradually because most rocks are made of several minerals, which all have different melting points; moreover, the physical and chemical relationships controlling the melting are complex. As a rock melts, for example, its volume changes. When enough rock is melted, the small globules of melt link up and soften the rock.
Under normal conditions, mantle rock like peridotite shouldn't melt in the Earth's upper mantle. However, by adding water you can lower the melting point of the rock. Alternatively, by decompressing the rock, you can bring it to a pressure where the melting point is lower. In both cases, basalt magma will form and considering it is hotter and less dense than the surrounding rock, it will percolate towards the surface and some of that erupts.
Answer:
a) F = -1035.385 N
b) Backwards
c) s = 15.60 m
Explanation:
Given information
= Initial Speed of Car = 15.0 m/s
= Final Speed of Car = 9.00 m/s
= Breaking Time = 1.30 s
= Mass of Car = 1040 kg
Part (a)
To find the force exerted on the car we use the following formula

Where
= Force = unknown
= Mass of Car = 1040 kg
= Acceleration of Car / Deceleration of Car = unknown
To find the force (F) we need to first find the deceleration rate (a)
To find the deceleration rate we use the following formula

Inputting the given values

To find the force

Part (b)
Since the value of F is negative this means the the force was opposite the direction of motion, hence the force was backwards.
Part (c)
To find the total distance the car moved while braking we use the following formula

Where
= distance traveled
Inputting the values given

I solved it and got 374.2N so i would put 375N
sorry i didn’t get any of the ones on there, i probably made a mistake.
Answer:
Following are the answer to this question:
Explanation:
Formula:

Calculating point A:
when the value is 




Calculating point B:
when the value is 



Calculating point C:
when the value is 




Calculating point D:
when the value is 




Calculating point E:
when the value is 



