I assume the 100 N force is a pulling force directed up the incline.
The net forces on the block acting parallel and perpendicular to the incline are
∑ F[para] = 100 N - F[friction] = 0
∑ F[perp] = F[normal] - mg cos(30°) = 0
The friction in this case is the maximum static friction - the block is held at rest by static friction, and a minimum 100 N force is required to get the block to start sliding up the incline.
Then
F[friction] = 100 N
F[normal] = mg cos(30°) = (10 kg) (9.8 m/s²) cos(30°) ≈ 84.9 N
If µ is the coefficient of static friction, then
F[friction] = µ F[normal]
⇒ µ = (100 N) / (84.9 N) ≈ 1.2
Answer:
B) the average distance from the Earth to the Sun
Explanation:
Answer:
The answer <em><u>is C. Mars</u></em>. Mars and Mercury are both smaller than Earth's core. Hope this helps you :)
It was formed by ancient volcanic eruptions.
This is for the reason that individuals are not continually taking a gander at precisely the same, and on the grounds that individuals' psyches of ten work distinctively and process data in marginally extraordinary ways getting diverse understandings of similar information.