Designing warning and evacuation systems could be a step in a plan designed to mitigate the negative impacts of a natural hazard.
The applicable equation:
P = F/A
P = pressure
F = Force or weight
A = surface area
Pressure on each cylinder = (W/n)/A
Where n = number of cylinders. Additionally, pressure in the reservoir is equivalent to the pressure in each cylinder.
Net pressure = 75 - 14.7 = 60.3 psi
Therefore,
60.3 = (W/n)/A = (450/n)/(πD^2/4) = (450/n)/(π*1.5^2/4) = (450/n)/(1.7671)
60.3*1.7671 = 450/n
106.03 = 450/n
n = 450/106.3 = 4.244 ≈ 5
The number of cylinders is 5.
Answer:
the power that can be generated by the river is 117.6 MW
Explanation:
Given that;
Volume flow rate of river v = 240 m³/s
Height above the lake surface a h = 50 m
Amount of power can be generated from this river water after the dam is filled = ?
Now the collected water in the dam contains potential energy which is used for the power generation,
hence, total mechanical energy is due to potential energy alone.
= m(gh)
first we determine the mass flow rate of the fluid m
m = p×v
where p is density ( 1000 kg/m³
so we substitute
m = 1000kg/m³ × 240 m³/s
m = 240000 kg/s
so we plug in our values into (
= m(gh) kJ/kg )
= 240000 × 9.8 × 50
= 117600000 W
= 117.6 MW
Therefore, the power that can be generated by the river is 117.6 MW
Answer:
F = 104.832 N
Explanation:
given,
upward acceleration of the lift = 1.90 m/s²
mass of box containing new computer = 28 kg.
coefficient of friction = 0.32
magnitude of force = ?
box is moving at constant speed hence acceleration will be zero.
Now force acting due to lift moving upward =
F = μ m ( g + a )
F = 0.32 × 28 × ( 9.8 + 1.9 )
F = 104.832 N
hence, the force applied should be equal to 104.832 N
Things are rubbed against each other