Answer:
The effective spring constant of the firing mechanism is 1808N/m.
Explanation:
First, we can use kinematics to obtain the initial velocity of the performer. Since we know the angle at which he was launched, the horizontal distance and the time in which it's traveled, we can calculate the speed by:

(This is correct because the horizontal motion has acceleration zero). Then:

Now, we can use energy to obtain the spring constant of the firing mechanism. By the conservation of mechanical energy, considering the instant in which the elastic band is at its maximum stretch as t=0, and the instant in which the performer flies free of the bands as final time, we have:

Then, plugging in the given values, we obtain:

Finally, the effective spring constant of the firing mechanism is 1808N/m.
The energy carried by a single photon of frequency f is given by:

where

is the Planck constant. In our problem, the frequency of the photon is

, and by using these numbers we can find the energy of the photon:
Answer
Explanation:
As the three resistors are connected in series, the expression to be used for the
calculation of RT equivalent resistance
is:
RT = R1 + R2 + R3
We replace the data of the statement in the previous expression and it remains:
5 10 15 RT + R1 + R2 + R3 + +
We perform the mathematical operations that lead us to the result we are looking for:
RT - 30Ω
If there is no current in the wire .....the direction of magnetic field remains unchanged
Answer: static electricity
Explanation:
When the plastic ruler is rubbed, friction opposes the motion and causes the transfer of electron from one surface to another such that plastic becomes negatively charged. When ruler is brought nearer to the paper, it induces the positive charge in the piece of paper.