Answer:
Average velocity

Average speed,

Explanation:
(a)Average velocity
We have to find the average velocity. We know that velocity is defined as the rate of change of displacement with respect to time.
To find the average velocity we have to find the total displacement.
since displacement along east direction is 50m
and displacement along west=40m
so total displacement,

total time,

therefore, average velocity

(b)Average Speed:
Average speed is defined as the ratio of total distance to the total time
it means
Average speed= total distance/total time
here total distance,

and total time,

therefore,
Average speed,

Free insulative sheets and insulative sheets backed by a grounded conductor are the only cases in which it is possible to extract reliable information from a noncontacting measurement of the charged state of an insulator. In both cases, the electric field from the charge is the deciding factor.<span>
</span>
10 degrees, because 0 degrees will receive the most sunlight, and 10 degrees is closest to 0 degrees.
Answer:
The Acceleration of the object = 6.4 m/s²
<u>Explanation:</u>
Mass of block (m) = 5 kg
Action force on block, (F₁) = 40 N
<u>To Find:</u>
Acceleration of the object (a) = ?
<u>Required solution:</u>
Frictional force opposing the motion (F₂) = 8 N
Here in this question we have to find Acceleration of the object. So, firstly we have to find Net force of block after that we will find Acceleration of the object on the basis of conditions given above
⇒ Net force = Action force on block - Opposing friction force
⇒ F = F₁ - F₂
⇒ F = 40 - 8
⇒ F = 32 N
Now, we have to two elements that used in formula, Net force and Mass of block.
Net force of the block (F) = 32 N
Mass of block (m) = 5 kg
And we have to find Acceleration of the object.
We can find Acceleration of the object by using the Second law of Newton which says F = ma
Here,
F is the Force in N.
m is the Mass in kg.
a is the Acceleration in m/s².
So let's find Acceleration (a) !
† From second law of Newton
⇛ F = ma
⇛ a = F/m
⇛ a = 32/5
⇛ a = 6.4 m/s²