Answer:

the mass of body B must be greater than the mass of body A
Explanation:
Newton's second law establishes a linear relationship between the force, the mass of the body and its acceleration
F = m a
a = F / m
Let's analyze this expression tells us that the force is of equal magnitude for the two bodies, but body A goes faster than body B, this implies that it has more relationships
a_A > a_B
Therefore, for this to happen, the mass of body B must be greater than the mass of body A
Answer:
The angular acceleration of the pencil<em> α = 17 rad·s⁻²</em>
Explanation:
Using Newton's second angular law or torque to find angular acceleration, we get the following expressions:
τ = I α (1)
W r = I α (2)
The weight is that the pencil has is,
sin 10 = r / (L/2)
r = L/2(sin(10))
The shape of the pencil can be approximated to be a cylinder that rotates on one end and therefore its moment of inertia will be:
I = 1/3 M L²
Thus,
mg(L / 2)sin(10) = (1/3 m L²)(α)
α(f) = 3/2(g) / Lsin(10)
α = 3/2(9.8) / 0.150sin(10)
<em> α = 17 rad·s⁻²</em>
Therefore, the angular acceleration of the pencil<em> </em>is<em> 17 rad·s⁻²</em>
A higher temperature, stiffer materials, and less dense materials increase the speed of sound.
Answer:

Explanation:
The potential energy of the spring or the work done by the spring is given by :
............(1)
k is the spring constant
d is the compression
When the spring is compressed a distance d' = d/3, let W' is the work is required to load the second dart. Then the work done is given by :

.............(2)
Dividing equation (1) and (2) :



So, the work required to load the second dart compared to that required to load the first is one-Ninth as much. Therefore, the correct option is (E).
Answer:
I learned this last year but I don't remember. Sorry