Recall this gas law:
= 
P₁ and P₂ are the initial and final pressures.
V₁ and V₂ are the initial and final volumes.
T₁ and T₂ are the initial and final temperatures.
Given values:
P₁ = 475kPa
V₁ = 4m³, V₂ = 6.5m³
T₁ = 290K, T₂ = 277K
Substitute the terms in the equation with the given values and solve for Pf:

<h3>P₂ = 279.2kPa</h3>
Answer:
17.64 km/h
Explanation:
mass of car, m = 1000 kg
Kinetic energy of car, K = 1.2 x 10^4 J
Let the speed of car is v.
Use the formula for kinetic energy.

By substituting the values

v = 4.9 m/s
Now convert metre per second into km / h
We know that
1 km = 1000 m
1 h = 3600 second
So, 
v = 17.64 km/h
Thus, the reading of speedometer is 17.64 km/h.
Answer:The train travels 105 meters after applying the brakes
Explanation:If he decelerates 1.5 every minute, then he went from 28,5 m/s, to 27.0 m/s, to 25.5 m/s, to 24.0 m/s, after 4 seconds. Add all this together and youll get 105 meters moved in 4 seconds after he hit the brakes, I dont have a notebook on me though sorry :/
Answer:
The correct answers are
(a) It decreases to 1/3 L
(ii) is (c) It is constant
Explanation:
to solve this, we list out the number of knowns and unknowns so as to determine the correct equation to solve the problem
The given variables are as follows
Initial volume V1 = 1L
V2 = Unknown
Initial Temperature T1 = 300K
let us assume that the balloon is perfectly elastic
At 300K the balloon is filled and it stretches to maintain 1 atmosphere
at 100K the content of the balloon cools reducing the excitement of the gas content which also reduces the pressure, however, the balloon being perfectly elastic, contracts to maintain the 1 atmospheric pressure, hence the answer to (ii) is (c) It is constant,
For (i) since we know that the pressure of the balloon is constant
by Charles Law V1/T1 =V2/T2
or V2 = (V1/T1)×T2 =
×
=
× L = L/3 hence the correct answer to (i) is 1/3L
Answer:
I actually have 20000 arena points thank you very much