1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kolbaska11 [484]
3 years ago
14

Walk done in units time is called​

Physics
1 answer:
____ [38]3 years ago
7 0

Answer:

Explanation:

work done per unit time is caleed power.it's SI unit is watt.it depends upon time.

You might be interested in
When atoms of an element are excited, they emit specific wavelengths of light. How is this similar to a fingerprint when Fraunho
Anika [276]

Answer:

As you may know, each element has a "fixed" number of protons and electrons.

These electrons live in elliptical orbits around the nucleus, called valence levels or energy levels.

We know that as further away are the orbits from the nucleus, the more energy has the electrons in it. (And those energies are fixed)

Now, when an electron jumps from a level to another, there is also a jump in energy, and that jump depends only on the levels, then the jump in energy is fixed.

Particularly, when an electron jumps from a more energetic level to a less energetic one, that change in energy must be compensated in some way, and that way is by radiating a photon whose energy is exactly the same as the energy of the jump.

And the energy of a photon is related to the wavelength of the photon, then we can conclude that for a given element, the possible jumps of energy levels are known, meaning that the possible "jumps in energy" are known, which means that the wavelengths of the radiated photons also are known. Then by looking at the colors of the bands (whose depend on the wavelength of the radiated photons) we can know almost exactly what elements are radiating them.

7 0
3 years ago
An eight-turn coil encloses an elliptical area having a major axis of 40.0 cm and a minor axis of 30.0 cm. The coil lies in the
Darina [25.2K]

Answer:

9.25 x 10^-4 Nm

Explanation:

number of turns, N = 8

major axis = 40 cm

semi major axis, a = 20 cm = 0.2 m

minor axis = 30 cm

semi minor axis, b = 15 cm = 0.15 m

current, i = 6.2 A

Magnetic field, B = 1.98 x 10^-4 T

Angle between the normal and the magnetic field is 90°.

Torque is given by

τ = N i A B SinФ

Where, A be the area of the coil.

Area of ellipse, A = π ab = 3.14 x 0.20 x 0.15 = 0.0942 m²

τ = 8 x 6.20 x 0.0942 x 1.98 x 10^-4 x Sin 90°

τ = 9.25 x 10^-4 Nm

thus, the torque is 9.25 x 10^-4 Nm.

5 0
3 years ago
Waves travel at different speeds when they travel in different_________.
Gnesinka [82]
I am sure it is frequency
8 0
3 years ago
Hello can someone please help me with this.
user100 [1]

Answer:

They are not concerned about their future health cause they are thinking they are probably healthy right now and they don’t realize that that can change in the future. If u are fit right now then that means u wont struggle with future physical fitness activities.

Explanation:

8 0
3 years ago
One end of a thin rod is attached to a pivot, about which it can rotate without friction. Air resistance is absent. The rod has
Mars2501 [29]

Answer:

6.86 m/s

Explanation:

This problem can be solved by doing the total energy balance, i.e:

initial (KE + PE)  = final (KE + PE). { KE = Kinetic Energy and PE = Potential Energy}

Since the rod comes to a halt at the topmost position, the KE final is 0. Therefore, all the KE initial is changed to PE, i.e, ΔKE = ΔPE.

Now, at the initial position (the rod hanging vertically down), the bottom-most end is given a velocity of v0. The initial angular velocity(ω) of the rod is given by ω = v/r , where v is the velocity of a particle on the rod and r is the distance of this particle from the axis.

Now, taking v = v0 and r = length of the rod(L), we get ω = v0/ 0.8 rad/s

The rotational KE of the rod is given by KE = 0.5Iω², where I is the moment of inertia of the rod about the axis of rotation and this is given by I = 1/3mL², where L is the length of the rod. Therefore, KE = 1/2ω²1/3mL² = 1/6ω²mL². Also, ω = v0/L, hence KE = 1/6m(v0)²

This KE is equal to the change in PE of the rod. Since the rod is uniform, the center of mass of the rod is at its center and is therefore at a distane of L/2 from the axis of rotation in the downward direction and at the final position, it is at a distance of L/2 in the upward direction. Hence ΔPE = mgL/2 + mgL/2 = mgL. (g = 9.8 m/s²)

Now, 1/6m(v0)² = mgL ⇒ v0 = \sqrt{6gL}

Hence, v0 = 6.86 m/s

4 0
3 years ago
Other questions:
  • In a double-slit experiment, if the central diffraction peak contains 13 interference fringes, how many fringes are contained wi
    9·1 answer
  • Is the eccentricity of planet orbits closer to 1 or 0?
    10·1 answer
  • Which of these has MOSTLY kinetic energy? the ball (B) the catcher (D) the pitcher (A) the batter (C)
    10·1 answer
  • Litmus paper is made from water-soluble dyes which are extracted from lichens. This paper is used as an acid-base indicator. Whi
    6·2 answers
  • Within the visible spectrum, our experience of red is associated with ________. shorter wavelengths intermediate wavelengths wav
    8·1 answer
  • Which of the following is a balanced equation?
    8·1 answer
  • Tracy stands on a skateboard and tosses her backpack to her friend who is standing in front of her. Which best describes the acc
    13·1 answer
  • The angle of incidence at a solid/liquid boundary is 59.6a?°, and the index of refraction of the solid is n = 1.55. (a what must
    14·1 answer
  • A pressure of 7x10^5N/m is applied to all surfaces of a copper cube (of sides 25 cm) what is the fractional change in volume of
    12·1 answer
  • A bowler throws a ball down the lane toward the pins. The ball reaches the pins and slowly moves through them, knocking down the
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!