Answer:
potential energy
kinetic energy
thermal energy
Explanation:
The book's potential energy can be released by knocking it off the table. As the book falls, its potential energy is converted to kinetic energy. When the book hits the floor this kinetic energy is converted into heat and sound by the impact.
When you reverse the direction of the current, the current loop generated by the magentic field is revered.
STEP ONE:
Let you and your friend stand as far away as possible from a large reflecting wall and clap your hands rapidly at a regular rate.
STEP TWO:
Adjust this rate until each clap just coincides with the return of an echo of its predecessor, or until clap and echo are heard as equally spaced.
STEP THREE:
Use a stopwatch to find the time between claps, t. Make a rough measurement of distance to the wall, s. Thus the speed of sound, v = 2s/t
I know that 4. Is wave 2 and 5. Is wave 3.
Answer:
a) x₀ = - 2 m , b) y = 4.47 m
Explanation:
A wave travels in the middle with constant speed, let's use the equation of uniform motion
v = d / t
t = d / v
The distance to the first listeners, see attached
d₁ = x₀-x
t = (x₀ +7) / v
The distance to the second listener
d₂ = x - x₀
t = (+ 3- x₀) / v
As the wave arrives at the same time, we can equal the two equations
(x₀ +7) / v = (3 -x₀) / v
x₀ + 7 = 3 - x₀
2 x₀ = 3 - 7
x₀ = -4/2
x₀ = - 2 m
b) The time it takes for the wave to reach the listeners of the x-axis, where the speed of sound is 340 m / s
t = 5/340
t = 0.0147 s
Let's look for the distance the wave travels for the listener axis and
v = d₃ / t
d₃ = v.t
d₃ = 340 * 0.0147
d₃ = 5 m
For the distance component we use the Pythagorean triangle
d₃² = x₀² + y²
y² = d₃² - x₀²
y = √ (d₃² -4)
y = √ (5² -4)
y = 4.47 m