Using the constant acceleration formula v^2 = u^2 + 2as, we can figure out that it would take a distance of 193.21m to reach 27.8m/s
Answer:
v = 0
Explanation:
This problem can be solved by taking into account:
- The equation for the calculation of the period in a spring-masss system
( 1 )
- The equation for the velocity of a simple harmonic motion
( 2 )
where m is the mass of the block, k is the spring constant, A is the amplitude (in this case A = 14 cm) and v is the velocity of the block
Hence

and by reeplacing it in ( 2 ):

In this case for 0.9 s the velocity is zero, that is, the block is in a position with the max displacement from the equilibrium.
Answer:
pressure, stress pascal N/m2
energy, work, quantity of heat joule N·m
power, radiant flux watt J/s
electric charge, quantity of electricity coulomb -
Answer:
6.25 m/s
Explanation:
mass of man (m1) = 80 kg
mass of boy (m2) = 20 kg
mass of man and boy after collision (m12)= 20 + 80 = 100 kg
velocity of man and boy after collision (v) = 2.5 m/s
angle θ = 60 °
How fast was the boy moving just before the collision
?
- From the diagram attached, the first image shows the man and the boys motion while the second diagram shows their motion rearranged to form a triangle. With the momentum of the man and the boy forming the sides of the triangle.
- M₁₂ = total momentum after collision = m12 x v = 100 x 2.5 = 250
- Mboy = momentum of the boy before collision = m2 x Velocity of boy
- Mman = momentum of the man before collision = m1 x velocity of man
- from the triangle, cos θ =

cos 60 = 
Mboy = 250 x cos 60 = 125
- recall that momentum of the boy (Mboy) also = m2 x Velocity of boy
therefore
125 = 20 x velocity of boy
velocity of boy = 125 / 20 = 6.25 m/s