It is energetically favorable for all atoms to have a complete outer
electron shell. Loosely, the atoms on the left hand side of the periodic
table only have a few extra electrons in their outer shell so it is
energetically favorable for them to lose them. The atoms on the right
hand side of the periodic table almost have enough electrons in their
outer shell and so they have a tendency to gain them.
Once electrons have left an electron shell, an atom will have a positive
charge because it has more protons (positive charges) than electrons
(negative charges). Similarly, an electron which has gained electrons to
complete its outer shell will have a negative charge because it now has
more electrons (negative charge) than protons (positive charge).
24.6 ℃
<h3>Explanation</h3>
Hydrochloric acid and sodium hydroxide reacts by the following equation:

which is equivalent to

The question states that the second equation has an enthalpy, or "heat", of neutralization of
. Thus the combination of every mole of hydrogen ions and hydroxide ions in solution would produce
or
of energy.
500 milliliter of a 0.50 mol per liter "M" solution contains 0.25 moles of the solute. There are thus 0.25 moles of hydrogen ions and hydroxide ions in the two 0.500 milliliter solutions, respectively. They would combine to release
of energy.
Both the solution and the calorimeter absorb energy released in this neutralization reaction. Their temperature change is dependent on the heat capacity <em>C</em> of the two objects, combined.
The question has given the heat capacity of the calorimeter directly.
The heat capacity (the one without mass in the unit) of water is to be calculated from its mass and <em>specific</em> heat.
The calorimeter contains 1.00 liters or
of the 1.0 gram per milliliter solution. Accordingly, it would have a mass of
.
The solution has a specific heat of
. The solution thus have a heat capacity of
. Note that one degree Kelvins K is equivalent to one degree celsius ℃ in temperature change measurements.
The calorimeter-solution system thus has a heat capacity of
, meaning that its temperature would rise by 1 degree celsius on the absorption of 4.634 × 10³ joules of energy.
are available from the reaction. Thus, the temperature of the system shall have risen by 3.03 degrees celsius to 24.6 degrees celsius by the end of the reaction.
Hello.
<span>It makes a longitudinal wave because it stretches and compresses while as it slithers foward.
</span>
Have a nice day
Answer:
the concentration of the solution is 0.00906 M
Explanation:
Given the data in the question;
we know that from Nernst Equation;
E = E⁰ - ((0.0592/n) logQ)
now, E₀ for concentration cell is 0
n for this redox is 2
concentration of the unknown solution is x
so we substitute
0.045 = 0 - ( 0.0592 / 2)log( x/0.300 ))
0.045 = -0.0296log( x/0.300 )
divide both side by 0.0296
1.52 = -log( x/0.300 )
x/0.300 =
x/0.300 = 0.0301995
we cross multiply
x = 0.300 × 0.0301995
x = 0.00906 M
Therefore, the concentration of the solution is 0.00906 M