Example: A apple rotting.
If I put my apple in a fridge, then it would not rot as fast because it is in a cooled area. (example)
Hope it helps! Brainiest Answer would be amazing!
The picture shows it has a real life something to display conservation of energy with kinetic energy and potential energy.
Five sentences are for potential and kinetic energy. Potential energy is to energy an object when it stores. Kinetic energy is something to motion. When the potential energy is slows down the potential energy it might be increases. As from the object when the speeds up and it is decreases to potential energy.
Kinetic energy is to calculated by KE= mass×velocity²/2 as a fraction.
Potential energy is to calculated by PE= mass×g×height.
And the another picture it has a <span>energy, kinetic energy, mechanical energy, conservation of energy.
</span>
We would have to search at least 5,000,000,000 (5 billion) stars before we would expect to hear a signal.
To find out the number of stars that we will need to search to find a signal, we need to use the following formula:
- total of stars/civilizations
- 500,000,000,000 (500 billion) stars / 100 civilization = 5,000,000,000 (5 billion)
This shows it is expected to find a civilization every 5 billion stars, and therefore it is necessary to search at least 5 billion stars before hearing a signal from any civilization.
Note: This question is incomplete; here is the complete question.
On average, how many stars would we have to search before we would expect to hear a signal? Assume there are 500 billion stars in the galaxy.
Assuming 100 civilizations existed.
Learn more about stars in: brainly.com/question/2166533
The formula for kinetic energy is
KE = (1/2) (mass) (speed)² .
How you measure the object's mass and speed is up to you.
You'd need different methods for different objects, and in some
cases, you'd need quite a bit of ingenuity.
So E = 2x10^-3W/m^2*(π*(3.0x10^-3m)^2)*1min*60s... = 3.4x10^-6J