Alpacas were used for their meat, fibers for clothing, and art, and their images in the form of conopas.
Answer:
25032.47 W
Explanation:
Power is the time rate of doing work, hence,
P = Work done(non conservative) / time
Work done (non conservative) is given as:
W = total K. E. + total P. E.
Total K. E. = 0.5mv²- 0.5mu²
Where v (final velocity) = 7.0m/s, u (initial velocity) = 0m/s
Total P. E. = mgh(f) - mgh(i)
Where h(f) (final height) = 7.2m, h(i) (initial height) = 0 m
=> W = 0.5mv² - mgh(f)
P = [0.5mv² - mgh(f)] / t
P = [(0.5*790*7²) - (790*9.8*7.2)] / 3
P = (19355 + 55742.4) / 3 = 75097.4/3
P = 25032.47 W
Answer:
0.5 m
14.00595
8 m/s, 0.0625 s
5.71314 m/s
Explanation:
k = Spring constant = 128 N/m
A = Amplitude
E = Energy in spring = 16 J
Energy in spring is given by

The amplitude is 0.5 m
Time period is given by

Number of oscillations is given by

The number of oscillations is 14.00595
For maximum speed

The maximum speed is 8 m/s
For a distance of 0.5 m which is the amplitude

The time taken would be 0.0625 s
The maximum kinetic energy is equal to the mechanical energy

At x = 0.35 m

The speed of the block is 5.71314 m/s
There’s no picture or question
Answer:
e) indicated that the speed of light is the same in all inertial reference frames.
Explanation:
In 18th century, many scientists believed that the light just like air and water needs a medium to travel. They called this medium <em>aether</em>. They believed that even the space is not empty and filled with aether.
Michelson and Morley tried to prove the presence and speed of this aether through an interference experiment in 1887. They made an interferometer in which light was emitted at various angles with respect to the supposed aether. Both along the flow and against the flow to see the difference in the speed of light. But they did not find no major difference and thus it became the first proof to disprove the theory of aether.
It thus proved that the speed of light remains same in all inertial frames.
Also, it became a base for the special theory of relativity by Einstein.