A) initial volume
We can calculate the initial volume of the gas by using the ideal gas law:

where

is the initial pressure of the gas

is the initial volume of the gas

is the number of moles

is the gas constant

is the initial temperature of the gas
By re-arranging this equation, we can find

:

2) Now the gas cools down to a temperature of

while the pressure is kept constant:

, so we can use again the ideal gas law to find the new volume of the gas

3) In a process at constant pressure, the work done by the gas is equal to the product between the pressure and the difference of volume:

by using the data we found at point 1) and 2), we find

where the negative sign means the work is done by the surrounding on the gas.
Average speed = total distance travelled ÷ total time taken
AS = (75km + 68km) ÷ (1hr + 2hr)
As = 143km ÷ 3hr
AS = 47.66667 km/hr
AS = 47.7 km/hr (3sf)
The object's final velocity, given the data is 10.5 rad/s
<h3>What is acceleration? </h3>
This is defined as the rate of change of velocity which time. It is expressed as
a = (v – u) / t
Where
- a is the acceleration
- v is the final velocity
- u is the initial velocity
- t is the time
<h3>How to determine the final velocity</h3>
The following data were obtained from the question
- Initial velocity (u) = 1.5 rad/s
- Acceleration (a) = 0.75 rad/s²
- Time (t) = 12 s
- Final velocity (v) = ?
The final velocity can be obtained as follow:
a = (v – u) / t
0.75 = (v – 1.5) / 12
Cross multiply
v – 1.5 = 0.75 × 12
v – 1.5 = 9
Collect like terms
v = 9 + 1.5
v = 10.5 rad/s
Thus, the final velocity of the object is 10.5 rad/s
Learn more about acceleration:
brainly.com/question/491732
#SPJ1
Answer:
a)KE=878.8 J
b)W=2636.4 J
Explanation:
Given that
mass ,m = 65 kg
Initial speed ,u = 5.2 m/s
a)
We know that kinetic energy KE is given as follows

m=mass
u=velocity
Now by putting the values in the above equation we get

KE=878.8 J
b)
We know that
Work done by all forces = Change in the kinetic energy
The final velocity , v= 2 u = 2 x 5.2 m/s
v= 10.4 m/s

Now by putting the values in the above equation we get

W=2636.4 J
a)KE=878.8 J
b)W=2636.4 J
We don't even need to know how many pulses were produced
in those 3 seconds.
The beginning of the first pulse took 3 seconds to travel
45 centimeters from the generator.
Its speed is (45 cm) / (3 sec) = 15 cm/sec.