One difficulty encountered in precipitation titration is that it is hard to determine the exact end point of its reaction.
Precipitation titration is a titration in which a reaction occurs from the analyte and titrant to form an insoluble precipitate.
With the use of silver for the titrations, (argentometric) we are able to develop many precipitation reactions.
The precipitation titrimetry methods with the use of argentometry includes
• Mohr’s Method
• Fajan’s Method
• Volhard’s Method
Difficulties encountered in precipitation titration includes
- Getting the exact end point is hard.
- it is a very slow titration method.
- it includes periods of filtration and cooling thereby reducing the reactions available for this type of titration.
See more on Precipitation: brainly.com/question/20628792
Answer: noble gasses
Explanation: zoom on on the red section and look at the key for what red means.
Answer:
ΔS° = 180.5 J/mol.K
Explanation:
Let's consider the following reaction.
4 NH₃(g) + 5 O₂(g) → 4 NO(g) + 6 H₂O(g)
The standard molar entropy of the reaction (ΔS°) can be calculated using the following expression.
ΔS° = ∑np × S°p - ∑nr × S°r
where,
ni are the moles of reactants and products
S°i are the standard molar entropies of reactants and products
ΔS° = 4 mol × S°(NO(g)) + 6 × S°(H₂O(g)) - 4 mol × S°(NH₃(g)) - 5 mol × S°(O₂(g))
ΔS° = 4 mol × 210.8 J/K.mol + 6 × 188.8 j/K.mol - 4 mol × 192.5 J/K.mol - 5 mol × 205.1 J/K.mol
ΔS° = 180.5 J/K
This is the change in the entropy per mole of reaction.
Answer:
All the members of a group of elements have the same number of valence electrons and similar chemical properties.
Explanation:
The vertical columns on the periodic table are called groups or families because of their similar chemical behavior.
Answer:
5.37 × 10⁻⁴ mol/L
Explanation:
<em>A chemist makes 660. mL of magnesium fluoride working solution by adding distilled water to 230. mL of a 0.00154 mol/L stock solution of magnesium fluoride in water. Calculate the concentration of the chemist's working solution. Round your answer to 3 significant digits.</em>
Step 1: Given data
- Initial concentration (C₁): 0.00154 mol/L
- Initial volume (V₁): 230. mL
- Final concentration (C₂): ?
- Final volume (V₂): 660. mL
Step 2: Calculate the concentration of the final solution
We want to prepare a dilute solution from a concentrated one. We can calculate the concentration of the final solution using the dilution rule.
C₁ × V₁ = C₂ × V₂
C₂ = C₁ × V₁ / V₂
C₂ = 0.00154 mol/L × 230. mL / 660. mL = 5.37 × 10⁻⁴ mol/L