Its a single Displacement reaction
Answer:
Hydrochloride acid + Zinc = Zinc Chloride + Hydrogen
Explanation:
When Hydrochloride acid and Zinc react, it results in the formation of Zinc chloride and hydrogen.
<em>Hope I helped</em>
Answer:
38.75 L
Explanation:
From the question,
Applying Boyles Law,
PV = P'V'....................... Equation 1
Where P = Original pressure of the Argon gas, V = Original Volume of Argon gas, P' = Final pressure of Argon gas, V' = Final Volume of Argon gas.
make V the subject of the equation
V = P'V'/P.................... Equation 2
Given: P = 34.6 atm, V' = 456 L, P' = 2.94 atm.
Substitute these values into equation 2
V = (456×2.94)/34.6
V = 38.75 L
Answer:
Nitrogen reacts with oxygen to form a number of nitrogen oxides. It exhibits different oxidation states in its oxides, ranging from +1 to +5. Oxides of nitrogen having nitrogen in the higher oxidation state are more acidic than that in lower oxidation state. Nitrogen oxides are critical components of photochemical smog. They produce the yellowish-brown colour of the smog. In poorly ventilated situations, indoor domestic appliances such as gas stoves and gas or wood heaters can be significant sources of nitrogen oxides.
Following are the harmful effects caused by the oxides of nitrogen
Nitrogen oxides causes irritation in mucous membrane.
Large concentrations of Nitrogen oxide causes lungs problems in humans
It causes injuries to vegetation by damaging leaves.
Nitrogen oxide oxidizes Hydrocarbons in the presence of sunlight, which causes eye irritation, asthama attacks, nasal and throat infections.
NO: sharp, sweet-smelling, colourless gas. Melting point: -163.6°C. Boiling point: -151.8°C. Relative Density: 1.04 (air = 1) NO2: reddish-brown gas with irritating odour
The answer is an acid.
That is a substance that gives up a proton during a chemical reaction, raising the hydrogen ion concentration of water, is most appropriately called an acid.
Acid is a substance that gives protons in its aqueous solution, and that the hydrogen ion concentration of that aqueous solution .