Answer:
- 0.1852
- 0.0947
- 0.7201
- 3.0345 kg CO / Kg C H
- 15.3848 Kg air / kg C H
Explanation:
Molar masses of each product are :
Butane = 58 kg /kmol
Oxygen = 32 kg/kmol
Nitrogen = 28 kg/kmol
water = 18 kg/kmol
<u><em>1) Calculate the mass fraction of carbon dioxide </em></u>
= ( 4 * 44 ) / ( (5 * 18) + (4 *44 )+ (24.44 * 28) )
= 176 / 950.32
= 0.1852
<em><u>2) Calculate the mass fraction of water </u></em>
= ( 5 * 18 ) / (( 5* 18 ) + ( 4*44) + ( 24.44 * 28 ))
= 90 / 950.32
= 0.0947
<em><u>3) Calculate the mass fraction of Nitrogen </u></em>
= (24.44 * 28 ) / ((4 * 44 ) + ( 24.44 * 28 ) + ( 5 * 18 ))
= 684.32 / 950.32
= 0.7201
<em><u>4) Calculate the mass of Carbon dioxide in the products</u></em>
Mco2 = ( 4 * 44 ) / 58 = 3.0345 kg CO / Kg C H
<u>5) Mass of Air required per unit of fuel mass burned </u>
Mair = ( 6.5 * 32 + 24.44 *28 ) / 58 = 15.3848 Kg air / kg C H
Answer:
Explanation:
check the attachment below for correct explanations.
Answer:
This metal could be the aluminium with a specific heat of
Explanation:
A pie of unknown metal presents a mass (M) of 348 g. This metal is heated using energy (E) of 6.64 kJ and the temperature increases from T1 =24.4 to T2 =43.6°C. We can calculate the specific heat (H) of this metal as follows
We can replace previously presented data in this equation. After simplifying and converting to adequated units, we found that
Finally, the specific heat of this metal is
The aluminium could be the metal, its specific heat is similar to that found in this problem.
Finally, we can conclude that this metal could be the aluminium with a specific heat of