When an object in simple harmonic motion is at its maximum displacement, its <u>acceleration</u> is also at a maximum.
<u><em>Reason</em></u><em>: The speed is zero when the simple harmonic motion is at its maximum displacement, however, the acceleration is the rate of change of velocity. The velocity reverses the direction at that point therefore its rate of change is maximum at that moment. thus the acceleration is at its maximum at this point</em>
<em />
Hope that helps!
106.68 centimetres are in 3.50 feet
The statement that can be used to answer this question is:
"If the cylinder is brought higher then, its temperature when brought down becomes higher because a greater amount of potential energy is converted to thermal energy."
The potential energy is converted to thermal energy when the object is released the velocity becomes higher because of the acceleration due to gravity.
The British physicist Joseph John (J. J.) Thomson (1856–1940) performed a series of experiments in 1897 designed to study the nature of electric discharge in a high-vacuum cathode-ray tube, an area being investigated by many scientists at the time. Thomson's model showed the atom as a positively charged ball of matter with negatively changed electrons floating freely around inside of it. This model showed the atom having no structure. There are also no protons and neutrons in this model. Thomson knew that the atom had positively and negatively charges particles in it he just didn't know how they were arranged. <span>Today's model gives us a much clearer picture of the atom. There is a positively charged center of the atom that is denser than the rest of it called the nucelus. This dense center is made up of positively charged protons and neutrally charged neutrons. Around the outside of the nucleus the electrons are organized on rings. These electrons are arranged in a certain pattern that is the same for all atoms.</span>