Double
Explanation:
Since the period T of a pendulum is given by

By increasing the length of the pendulum by 4, the period becomes

You can see that the period doubles when we increase the length by a factor of 4.
Answer:
a. 5 × 10¹⁹ protons b. 2.05 × 10⁷ °C
Explanation:
Here is the complete question
A beam of protons is moving toward a target in a particle accelerator. This beam constitutes a current whose value is 0.42 A. (a) How many protons strike the target in 19 seconds? (b) Each proton has a kinetic energy of 6.0 x 10-12 J. Suppose the target is a 17-gram block of metal whose specific heat capacity is 860 J/(kg Co), and all the kinetic energy of the protons goes into heating it up. What is the change in temperature of the block at the end of 19 s?
Solution
a.
i = Q/t = ne/t
n = it/e where i = current = 0.42 A, n = number of protons, e = proton charge = 1.602 × 10⁻¹⁹ C and t = time = 19 s
So n = 0.42 A × 19 s/1.602 × 10⁻¹⁹ C
= 4.98 × 10¹⁹ protons
≅ 5 × 10¹⁹ protons
b
The total kinetic energy of the protons = heat change of target
total kinetic energy of the protons = n × kinetic energy per proton
= 5 × 10¹⁹ protons × 6.0 × 10⁻¹² J per proton
= 30 × 10⁷ J
heat change of target = Q = mcΔT ⇒ ΔT = Q/mc where m = mass of block = 17 g = 0.017 kg and c = specific heat capacity = 860 J/(kg °C)
ΔT = Q/mc = 30 × 10⁷ J/0.017 kg × 860 J/(kg °C)
= 30 × 10⁷/14.62
= 2.05 × 10⁷ °C
Answer:
1.7323
Explanation:
To develop this problem, it is necessary to apply the concepts related to refractive indices and Snell's law.
From the data given we have to:



Where n means the index of refraction.
We need to calculate the index of refraction of the liquid, then applying Snell's law we have:



Replacing the values we have:


Therefore the refractive index for the liquid is 1.7323
1/2mv^2
1/2x12x10^2=600J
The kinetic energy is 600J
Answer
Applying Wein's displacement

1) for sun T = 5800 K


2) for tungsten T = 2500 K


3) for heated metal T = 1500 K


4) for human skin T = 305 K


5) for cryogenically cooled metal T = 60 K


range of different spectrum
UV ----0.01-0.4
visible----0.4-0.7
infrared------0.7-100
for sun T = 5800
λ 0.01 0.4 0.7 100
λT 58 2320 4060 5.8 x 10⁵
F 0 0.125 0.491 1
fractions
for UV = 0.125
for visible = 0.441-0.125 = 0.366
for infrared = 1 -0.491 = 0.509