Answer:
(1) Cl₂ is the limiting reactant.
(2) 8.18 g
Explanation:
- 2Na(s) + Cl₂(g) → 2NaCl(s)
First we <u>convert the given masses of reactants into moles</u>, using their <em>respective molar masses</em>:
- Na ⇒ 12.0 g ÷ 23 g/mol = 0.522 mol Na
- Cl₂ ⇒ 5.00 g ÷ 70.9 g/mol = 0.070 mol Cl₂
0.070 moles of Cl₂ would react completely with (2 * 0.070) 0.14 moles of Na. There are more Na moles than that, so Na is the reactant in excess while Cl₂ is the limiting reactant.
Then we <u>calculate how many moles of NaCl are formed</u>, <em>using the limiting reactant</em>:
- 0.070 mol Cl₂ *
= 0.14 mol NaCl
Finally we <u>convert NaCl moles into grams</u>:
- 0.14 mol NaCl * 58.44 g/mol = 8.18 g
Homogeneous mixture that does not settle out upon standing but which will reflect light is called COLLOIDS.
There are three types of homogeneous mixtures, these are: solutions, colloids and suspension. Colloids are usually distinguished by Tyndall effects. Light passing through a colloidal dispersion will be reflected.<span />
1. B
The positive charge in water is provided by hydrogen, and gold provides the same charge. However, gold is not more reactive than hydrogen so it can not replace it in the compound.
2. In order to balance the equation, you must sure there are equal moles of each element on the left and right side of the equation:
2C₂H₆ + 7O₂ → 4CO₂ + ₆H₂O
3. The number of moles of sodium atoms on the left of the equation must be equal to the number of moles of sodium atoms on the right, as per the law of conservation of mass. The answer is B.
4. C.
A synthesis reaction usually results from single displacement because some element or compound is produced in its pure form
5. B.
The gas being produced is being synthesized.
Using the VSEPR theory, the electron bond pairs and lone pairs on the center atom will help us predict the shape of a molecule. The shape of a molecule is determined by the location of the nuclei and its electrons. The electrons and the nuclei settle into positions that minimize repulsion and maximize attraction.