I believe KI is not a a binary molecule.
Your welcome
Answer:
982.5 kg/m³
Explanation:
When the temperature of a fluid increases, it dilates, and because of the variation of the volume, it's density will vary too. The density can be calculated by the expression:
ρ₁ = ρ₀/(1 + β*(t₁ - t₀))
Where ρ₁ is the final density, ρ₀ the initial density, β is the constant coefficient of volume expansion, t₁ the final temperature, and t₀ the initial temperature.
At t₀ = 4°C, the water desity is ρ₀ = 1,000 kg/m³. The value of the constant for water is β = 0.0002 m³/m³ °C, so, for t₁ = 93°C
ρ₁ = 1,000/(1 + 0.0002*(93 - 4))
ρ₁ = 1,000/(1+ 0.0178)
ρ₁ = 982.5 kg/m³
not be changed to balance an equationSubscripts are part of the chemical formula for reactants or products and can
Changing a subscript changes the substance represented by the formula
Answer is: <span>The general rule of thumb is that the smaller a substance's atoms and the stronger the bonds, the harder the substance will be.
If the distance between atoms is higher, lesser will be attraction between electrons and protons of atoms, smaller distance means stronger atoms attraction.
</span>