What question are you asking?
There are multiple reasons for this. First of all, water is available in almost every place on the Earth. It doesn't pollute the air, doesn't cause health use and is easily handle.
Other factor is the fact that water has a really high specific heat. This means that water, and more specifically steam, can aborb and transport more energy. A lower heat capacity would imply the need to boil more of the liquid to obtain the same amount of energy. This combine with the fact that water expands at a large rate when boiling, combine with everything mentioned previously, and you get a liquid with all the characteristics that a efficient turbine requires to work.
Answer:
The correct answer is a Low earth orbit.
Explanation:
A low earth orbit can be understood as an earth orbit with an altitude of 1,000 miles or less. It is a satellite sustem that employs many satelites, in fact, most man-made objects that are currently in outer-space are part of this low earth orbit. (LEO).
The most famous LEO satellite system is the one from planet earth. Almost every space flight that human beings have ever done are done in LEO, and every spacial station is located in this zone.
In conclusion, A low earth orbit satellite system employs many satellites, each in an orbit at an altitude of less than 1,000 miles.
There is more thermal energy in the lake because there is more water which is more thermal energy
To solve the problem it is necessary to apply the concepts related to Kepler's third law as well as the calculation of distances in orbits with eccentricities.
Kepler's third law tells us that

Where
T= Period
G= Gravitational constant
M = Mass of the sun
a= The semimajor axis of the comet's orbit
The period in years would be given by

PART A) Replacing the values to find a, we have




Therefore the semimajor axis is 
PART B) If the semi-major axis a and the eccentricity e of an orbit are known, then the periapsis and apoapsis distances can be calculated by


