Answer:
Without this slack, a locomotive might simply sit still and spin its wheels. The loose coupling enables a longer time for the entire train to gain momentum, requiring less force of the locomotive wheels against the track. In this way, the overall required impulse is broken into a series of smaller impulses. (This loose coupling can be very important for braking as well).
Explanation:
Answer:
Please find the answer in the explanation
Explanation:
1.) How far is Object Z from the origin at t = 3 seconds
The distance of the object Z from the origin will be the slope of the graph.
Slope = 4/2 = 2m
2.) Which object takes the least time to reach a position 4 meters from the origin ?
According to the graph given to the question above, object Z has the list time which is 2 seconds since object X does not start from the origin.
3.) Which object is farthest from the origin at t = 2 seconds?
The correct answer is still object Z because it has the highest slope.
Hello!
Use the formula:
M = k * p
Data:
M = Mechanic energy
k = Kinetic energy
p = Potencial energy
Descomposing:
M = (0,5*mv²) + (mgh)
Replacing:
M = (0,5 * 59,6 kg * (23,4 m/s)²) + (59,6 kg * 9,81 m/s² * 44,6 m)
M = 16317,28 J + 26076,54 J
M = 42393,82 J
The mechanic energy is <u>42393,82 Joules.</u>
Answer:
We know the information about atomic size, energy, electronic configuration etc. of atom from the periodic table.
Explanation:
- Periodic table is the arrangement of elements that are arranged according to their properties and electronic configuration.
- In periodic table, on furthest right side of the periodic table, noble gases like He, Ne, Ar etc are arranged.
- The atomic number of element increases while moving from left towards right in the periodic table.
- The metallic character of element decreases as we proceed the table towards right.
- They readily accept electron to fill the valence shell hence becoming more metallic in character.
Explanation:
its hard to explain its very complex but its so they can function properly