You have to find the calculate<span> the circumference first then you can just multiply the diameter by π, which is about 3.142. That gives you the distance for each </span>revolution<span>. Then you can multiply by the </span>number of revolutions<span> per minute.
</span>
The gravitational force between the objects A. It would increase.
Explanation:
The magnitude of the gravitational force between two objects is given by:

where
G is the gravitational constant
are the masses of the two objects
r is the separation between the objects
In this problem, we are told that one of the object (the one on the right) gains mass: this means that, for instance, the value of
increases. We can see from the equation that the gravitational force is directly proportional to the masses: therefore, if one of the masses increases (while the distance between the two objects remains constant), it means that the force also increases.
Therefore, the correct answer is
A. It would increase.
Learn more about gravitational force:
brainly.com/question/1724648
brainly.com/question/12785992
#LearnwithBrainly
Answer:
<u>The magnitude of the friction force is 8197.60 N</u>
Explanation:
Using the definition of the centripetal force we have:

Where:
- m is the mass of the car
- v is the speed
- R is the radius of the curvature
Now, the force acting in the motion is just the friction force, so we have:
<u>Therefore the magnitude of the friction force is 8197.60 N</u>
I hope it helps you!
Answer: Alfred Wegener provided some of the important points that supported the theory of continental drift. They are as follows-
- The continents were once all attached together, and this can be proved by studying the coastlines of some of the continents that perfectly matches with one another.
- The appearance of similar rock types and similar fossils (including both animals and plants) has also contributed much information that continents were once all together.