Answer:
Explanation:
In organic chemistry, the reaction between 2-butanol with TsCl and Et3N is known as the tosylation of the alcohol hydroxyl group. Alcohol is being changed to tosylate by the use of tosyl chloride under the influence of a base. Tosylation of alcohol is an example of a nucleophilic substitution reaction. From the image attached below, we will see how the reaction between 2-butanol proceed into the product by using tosyl chloride and a base(Et3N).
Answer:
The halogens are extremely reactive, whilst the noble gases are mainly inert.
Only some noble gases tend to form compounds, such as xenon and krypton. However, some like helium, almost have no compounds at all.
Noble gases also have octet rule shells, which causes the little reactivity associated with them.
To form bonds with noble gases, a lot of energy is required to form those bonds.
Halogens, on the other hand, are extremely reactive. Compounds like chlorine and fluorine must be stored carefully, as they will oxidise anything that they can find, just to get one extra electron to get an octet configuration.
Hope this helps :)
One is rows the other is columns
6.21 x 10^3 = (Move decimal point 3 spaces to the right)
6210
6210 (0.1050)
652.05
Answer:
2. All the naturally occurring isotopes of Mg.
Explanation:
You want to know the atomic mass of the magnesium you use in the lab. That’s “natural” magnesium. So, you must use the weighted average of all the naturally occurring isotopes in natural Mg.
1. and 3. are <em>wrong</em>. You won’t get the correct mass for natural Mg if you use only the artificial isotopes for your calculation.
4. is <em>wrong</em>. You must use all the naturally occurring isotopes. The two most abundant isotopes of Mg account for only 90 % of the atoms. If you ignore the other 10 %, your calculation will be wrong.