Answer:
I could create a slower reaction because the particles might be moving slower due to the cold. if it was warm there will be a faster reaction. similar to the elements movements in solids and liquids.
Answer:
Glucose
Explanation:
Glucose is a source of energy and it is stored in the body (in the form of glycogen) and it can also dissolve in water.
For a closed system, you need two things:
1) a conservation of mass within the boundaries of the system
2) the ability to freely exchange energy to & from the "closed" system with a surrounding external system
So, the answer is <u><em>never</em></u>, since your defining the "system" as the water within the bathtub, and an open bathtub is exposed to evaporation, which is not conserving mass within the defined "system".
The half-life of the substance is 3.106 years.
<h3>What is the formula for exponential decay?</h3>
- The exponential decline, which is a rapid reduction over time, can be calculated with the use of the exponential decay formula.
- The exponential decay formula is used to determine population decay, half-life, radioactivity decay, and other phenomena.
- The general form is F(x) = a.
Here,
a = the initial amount of substance
1-r is the decay rate
x = time span
The equation is given in its correct form as follows:
a =
×
As this is an exponential decay of a first order reaction, t is an exponent of 0.8.
Now let's figure out the half life. Since the amount left is half of the initial amount at time t, that is when:
a = 0.5 a0
<h3>Substituting this into the equation:</h3>
0.5
=
×
0.5 = 
taking log on both sides
t log 0.8 = log 0.5
t = log 0.5/log 0.8
t = 3.106 years
The half-life of the substance is 3.106 years.
To learn more about exponential decay formula visit:
brainly.com/question/28172854
#SPJ4