Wavelength of the light is 2.9 × 10⁻⁷ m.
<u>Explanation:</u>
Planck - Einstein equation shows the relationship between the energy of a photon and its frequency, and they are directly proportional to each other and it is given by the equation as E = hν,
where E is the energy of the photon
h is the Planck's constant = 6.626 × 10⁻³⁴ J s
ν is the frequency
From the above equation, we can find the frequency by rearranging the equation as,
ν =
= 
Now the frequency and the wavelength are in inverse relationship with each other.
ν × λ = c
It can be rearranged to get λ as,
λ = c / ν
= 
So wavelength is 2.9 × 10⁻⁷ m.
The name come from the German 'Bisemutum' a corruption of 'Weisse Masse' meaning white mass.
Answer:
32.25
Explanation:
8NH3 + 3Cl2 → 6NH4Cl + N2
NH3 = 17 g/mol
number of moles = 1
NH4Cl= 43 g/mol
number of moles = 3/4
mass= 43 × ¾ ≈ 32.25 g
Answer : The concentration of
and
at equilibrium is, 0.0158 M and 0.00302 M respectively.
Explanation :
First we have to calculate the concentration of 



Now we have to calculate the value of equilibrium constant (K).
The given chemical reaction is:

Initial conc. 0.0163 0.00415 0.00276
At eqm. (0.0163-2x) (0.00415+x) (0.00276+x)
As we are given:
Concentration of
at equilibrium = 0.00467 M
That means,
(0.00415+x) = 0.00467
x = 0.00026 M
Concentration of
at equilibrium = (0.0163-2x) = (0.0163-2(0.00026)) = 0.0158 M
Concentration of
at equilibrium = (0.00276+x) = (0.00276+0.00026) = 0.00302 M