Answer:
1 second later the vehicle's velocity will be:

5 seconds later the vehicle's velocity will be:

Explanation:
Recall the formula for the velocity of an object under constant accelerated motion (with acceleration "
"):

Therefore, in this case
and 
so we can estimate the velocity of the vehicle at different times just by replacing the requested "t" in the expression:

Answer:
5070
Explanation:
add them up and then you get <em>your</em><em> </em><em>answers</em><em> </em>
When practicing an oral presentation, you can prepare by writing a draft and practice reading aloud what you are going to say before your oral presentation.
Answer:
y = 77.74 10⁻⁵ m
Explanation:
For this exercise we can use Newton's second law
F = m a
a = F / m
a = 4.9 10⁻¹⁶ / 9.1 10⁻³¹
a = 0.538 10¹⁵ m / s
This is the vertical acceleration of the electron.
Now let's use kinematics to find the time it takes to move the
x= 29 mm = 29 10⁻³ m
On the x axis
v = x / t
t = x / v
t = 29 10⁻³ / 1.7 10⁷
t = 17 10⁻¹⁰ s
Now we can look for vertical distance at this time.
y =
t + ½ a t²
y = 0 + ½ 0.538 10¹⁵ (17 10⁻¹⁰)²
y = 77.74 10⁻⁵ m