Answer:
Electric generator is the device that converts mechanical energy into electrical energy
Answer:
2 h
Explanation:
Velocity =Distance/time ⇒ time = distance/speed
= 1440/720
= 2 h
<em>Newton's second law of motion can be formally stated as follows: The acceleration of an object as produced by a net force is directly proportional to the magnitude of the net force, in the same direction as the net force, and inversely proportional to the mass of the object.</em>
Answer:
a) t = 0.75 s, b) t = 2.25 s
Explanation:
The speed of sound is constant in a material medium
v = 340 m / s
we can use the relations of uniform motion to find the time
v = x / t
t = x / v
In the exercise, the observer's distance to the wall is indicated d = 510 m, it also indicates that the shot is fired at the midpoint
x = d / 2
a) direct sound the distance from the observer to the screen is
x = 510/2 = 255 m
t = 255/340
t = 0.75 s
b) echo sound.
In this case the sound reaches the wall bounces, the distance is
x = d / 2 + d
x = 3/2 d
x = 3/2 510
x = 765 m
the time is
t = x / v
t = 765/340
t = 2.25 s
Answer:
7.74m/s
Explanation:
Mass = 35.9g = 0.0359kg
A = 39.5cm = 0.395m
K = 18.4N/m
At equilibrium position, there's total conservation of energy.
Total energy = kinetic energy + potential energy
Total Energy = K.E + P.E
½KA² = ½mv² + ½kx²
½KA² = ½(mv² + kx²)
KA² = mv² + kx²
Collect like terms
KA² - Kx² = mv²
K(A² - x²) = mv²
V² = k/m (A² - x²)
V = √(K/m (A² - x²) )
note x = ½A
V = √(k/m (A² - (½A)²)
V = √(k/m (A² - A²/4))
Resolve the fraction between A.
V = √(¾. K/m. A² )
V = √(¾ * (18.4/0.0359)*(0.395)²)
V = √(0.75 * 512.53 * 0.156)
V = √(59.966)
V = 7.74m/s